Interactive Shallow Clifford Circuits: Quantum advantage against NC¹ and beyond

Daniel Grier
University of Waterloo

Luke Schaeffer University of Waterloo

Quantum advantage with shallow circuits

Bravyi, Gosset, König (2017): There is a relation task solved by a constant-depth quantum circuit that cannot be solved by any constant-depth classical circuit with bounded fan-in gates.

- Additional nice properties:
 - Simple gate set: classically-controlled Clifford gates Simple circuit topology: gates are local on the 2D grid
- No conjectures or assumptions necessary

Caveat: Bounded fan-in, constant-depth, classical circuits are weak.

Bene Watts, Kothari, Schaeffer, Tal (2019): Improved to unbounded fan-in circuits with AND, OR, and NOT gates.

BGK relation task:

Given $x \in \{0,1\}^n$ Output $y \in \{0,1\}^n$ s.t. $|\langle y | Q | x \rangle| > 0$

New separations from interactivity

Theorem: There is a 2-round *interactive* task which can be solved by a constant-depth quantum circuit that

Unconditional: Cannot be solved by constant-depth circuits with unbounded AND, OR, NOT, and PARITY gates.

Complexity-theoretic: Assuming $L \neq \bigoplus L$, cannot be solved by logarithmic-space Turing machines.

Morally the same problem from BGK.

Small complexity classes

NC: bounded fan-in AND, OR, and NOT gates

AC: unbounded fan-in AND, OR, and NOT gates

AC[2]: unbounded fan-in AND, OR, NOT, and PARITY gates

constant depth

L: Log-space Turing machines

 $O(\log n)$ depth

Interactive task

$$\sum_{x} \prod_{(i,j) \in E} (-1)^{x_i x_j} |x\rangle$$

prepare cluster state

prepare cluster state

prepare cluster state round 1

Classical simulation can return any valid measurement outcome

Quantum vs. classical interactive tasks

Main theorem - classical simulation is hard

Theorem: Suppose there is a classical simulator (R) which can solve the 2-round measurement problem on grids of width m. Then,

$$m = 1$$
: R solves $AC^0[6]$ problems $AC^0[6] \subseteq (AC^0)^R$

$$m = 2$$
: R solves NC^1 problems $NC^1 \subseteq (AC^0)^R$

$$m = n : R \text{ solves} \oplus L \text{ problems}$$
 $\oplus L \subseteq (AC^0)^R$

Warning: Theorem does not imply that QNC⁰ circuits solve ⊕L-hard problems.

Corollary: There is no $AC^0[2]$ circuit for the 2-round measurement problem on the $2 \times n$ grid.

proof: $NC^1 \subseteq (AC^0)^{AC^0[2]} = AC^0[2]$ False: Contradicts Razborov-Smolensky theorem

Proof goal: NC¹-hardness

Reduction: If classical device can solve the 2-round measurement problem, then it can solve the Clifford gate multiplication problem.

Clifford gate multiplication:

Input: 2-qubit Clifford gates $g_1, g_2, ..., g_n$

Output: $g_n \cdots g_2 g_1$

Fact: Clifford gate multiplication is NC¹-hard.

 \rightarrow Even when product is always $I \otimes I$ or $H \otimes H$.

Proof Outline (high level):

Round 1 - Use measurement-based computation to create $g_n \cdots g_2 g_1 |00\rangle$

Round 2 - Use rewinding ability to make many measurements

- Determine if state is $|00\rangle$ or $|++\rangle$

Round 1: Measurement-based computation

Ideal situation:

Fact (Raussendorf, Browne, Briegel 2008):

For any 2-qubit Clifford gate g, there is a set of X and Y measurements on the 2×20 grid such that the unmeasured qubits are in the state $Pg |00\rangle$ where the Pauli P depends on the measurement outcomes.

These states are not the same

Round 1: Measurement-based computation

Reason: The usual measurement-based computation technique is adaptive.

First gate (g_1) : $P_1g_1\,|00\rangle$ Second gate (g_2P_1) : $P_2g_2P_1P_1g_1\,|00\rangle = P_2g_2g_1\,|00\rangle$:

Would require many rounds of interaction

Fact: For any Clifford g and Pauli P $gP = gPg^{\dagger}g = (gPg^{\dagger})g = P'g$

$$P_n g_n \cdots P_2 g_2 P_1 g_1 |00\rangle = P g_n \cdots g_2 g_1 |00\rangle$$

Problem:

Computing *P* from $P_1, P_2, ..., P_n$ is NC¹-hard.

Scary: The channel $\rho \mapsto P\rho P^{\dagger}$ for random Pauli P is the completely depolarizing channel.

Intuition: A single measurement may not reveal sufficient information to determine the state, but many "non-collapsing" measurements might suffice.

Plan: Use repeated measurements to deduce the stabilizer groups of the state.

Stabilizer group: the group of Pauli operators that fix the state. $(P|\psi\rangle = |\psi\rangle)$

$$\mathsf{Stabilizer}(P \mid 00)) = \begin{pmatrix} II \\ a \ ZI \\ b \ IZ \\ ab \ ZZ \end{pmatrix} \quad \mathsf{Stabilizer}(P \mid ++)) = \begin{pmatrix} II \\ a \ XI \\ b \ IX \\ ab \ XX \end{pmatrix} \qquad a,b \in \{\pm 1\}$$

Measurement of Pauli P on state $|\psi\rangle$:

If $aP \in \text{Stabilizer}(|\psi\rangle)$, then outcome is $a \in \{\pm 1\}$.

If $aP \notin Stabilizer(|\psi\rangle)$, then outcome can be either +1 or -1.

Plan: Make many Pauli measurements on the state and hope to receive outcomes which are both +1 and -1.

Observations:

1) Pauli operators along any row/column commute, so we can measure them simultaneously.

Plan: Make many Pauli measurements on the state and hope to receive outcomes which are both +1 and -1.

$XX \times YY \times ZZ = -II$

$$YZ \times ZX \times XY = -II$$

$$ZY \times XZ \times YX = -II$$

Observations:

- 1) Pauli operators along any row/column commute, so we can measure them simultaneously.
- 2) If we measure a row, the measurement outcomes multiply to -1.

Plan: Make many Pauli measurements on the state and hope to receive outcomes which are both +1 and -1.

XX	YY	ZZ
X	X	XY
$\overset{ imes}{ZY}$	XX	$\overset{x}{YX}$
= <i>II</i>	= <i>II</i>	= <i>II</i>

Observations:

- 1) Pauli operators along any row/column commute, so we can measure them simultaneously.
- 2) If we measure a row, the measurement outcomes multiply to -1.

If we measure a column, the measurement outcomes multiply to +1.

Plan: Make many Pauli measurements on the state and hope to receive outcomes which are both +1 and -1.

$${}^{+1}XX {}^{-1}YY {}^{-1}ZZ {}^{+1}$$
 ${}^{-1}YZ {}^{-1}ZX {}^{-1}XY {}^{-1}$
 ${}^{-1}XX {}^{-1}XY {}^{-1}$
 ${}^{-1}XX {}^{-1}XX {}^{-1}$
 ${}^{-1}XX {}^{-1}XX {}^{-1}$

Observations:

- 1) Pauli operators along any row/column commute, so we can measure them simultaneously.
- 2) If we measure a row, the measurement outcomes multiply to -1.
 - If we measure a column, the measurement outcomes multiply to +1.
- 3) No consistent way to label the square that satisfies row/column conditions.

In previous example, we were able to deduce XY was not in the stabilizer group of our state, but...

XY does not appear in either stabilizer group

$$Stabilizer(|00\rangle) = \begin{pmatrix} II \\ ZI \\ IZ \\ ZZ \end{pmatrix} \qquad Stabilizer(|++\rangle) = \begin{pmatrix} II \\ XI \\ IX \\ XX \end{pmatrix}$$

Solution: Randomize the input.

Instead of obtaining an arbitrary non-stabilizer of our state, we get a *random* non-stabilizer.

Open Questions

1) Hardness beyond $\oplus L$?

Theorem: 2-round measurement problem is in $\oplus L$ for Clifford circuits.

2) Allow for classical circuit simulation error?

Theorem: NC^1 reduction still holds when classical circuit errs with probability less than 2/75.

- Is this optimal? What about $\oplus L$?
- 3) Allow the quantum circuit to err?

Theorem (Bravyi, Gosset, König, Tomamichel):

Noisy QNC⁰ circuits can solve a relation problem that NC⁰ circuits cannot.

Can these techniques be ported to the interactive setting?