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Quantum advantage with shallow circuits

Bravyi, Gosset, Konig (2017): There is a relation task solved by a
constant-depth quantum circuit that cannot be solved by any

constant-depth classical circuit with bounded fan-in gates.

—— Additional nice properties:

Simple gate set: classically-controlled Clifford gates
Simple circuit topology: gates are local on the 2D grid

— No conjectures or assumptions necessary
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Caveat: Bounded fan-in, constant-depth, classical circuits are weak.
_

. Bene Watts, Kothari, Schaeffer, Tal (2019):
Improved to unbounded fan-in circuits with AND, OR, and NOT gates.

\_

BGK relation task:
Given x € {0,1}"
Output y € {0,1}"

s.t. [(y|Q]x)| >0

\
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New separations from interactivity

-~
Theorem: There is a 2-round interactive task which can be

solved by a constant-depth quantum circuit that

Unconditional: Cannot be solved by constant-depth circuits
with unbounded AND, OR, NOT, and PARITY gates.

Complexity-theoretic: Assuming L # @L, cannot be solved by
logarithmic-space Turing machines.

—— Morally the same problem from BGK.



Small complexity classes

NC : bounded fan-in AND, OR, and NOT gates

AC : unbounded fan-in AND, OR, and NOT gates

AC[2] : unbounded fan-in AND, OR, NOT, and PARITY gates
L : Log-space Turing machines

If strict,

69 L : pOly-dep’[h CNOT CirCUitS then Separatign
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Relation QNC®  Relation QNC®  Interactive QNC°
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constant depth O(log n) depth




Interactive task

Gallenger (Quantum) PFO\D

X, Y, or Z basis for all but a few qubits

measurement outcomes r ~
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X, Y, or Z basis for remaining qubits

measurement outcomes J
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Interactive quantum task - Example
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Interactive quantum task - Example
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Interactive quantum task - Example
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Interactive quantum task - Example
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Interactive quantum task - Example
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Interactive quantum task - Example

Classical simulation can return
any valid measurement outcome

-----------------------------
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Quantum vs. classical interactive tasks

gquantum classical
Challenger Prover
a )

X,Y, Z bases Key Idea: Any classical

O ] simulation must have a
- classical representation of
2 measurement outcomes the state between round
v ' 1 and round 2.
______________________________________________________________ IR 00101011... al y
XY, Z bases / \ Can rewind classical

d?2

simulation to measure 2nd
round state multiple times

roun

\ measurement outcomes J
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Main theorem - classical simulation iIs hard

-
Theorem: Suppose there is a classical simulator (R) which can

solve the 2-round measurement problem on grids of width m.
Then,

m=1: R solves AC[6] problems ACP[6] C (ACO)R
m =2 R solves NC' problems NC' C (ACOR
m =n: R solves ®L problems BL C (ACO)R

\—
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Warning: Theorem does
not imply that QNC’
circuits solve @L-hard
problems.

[Corollary: There is no ACY[2] circuit for the 2-round measurement problem on the 2 x n grid.

proof:  NC! C (ACOHAC2 = ACO[2]

False: Contradicts Razborov-Smolensky theorem



Proof goal: NC-hardness

~
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Reduction: If classical device can
solve the 2-round measurement
problem, then it can solve the Clifford
gate multiplication problem.

J

_

Clifford gate multiplication:

Input:  2-qubit Clifford gates g, g5, ..., g,
Output: 8, 8281

_J

[Fact: Clifford gate multiplication is NC!-hard. ]—» Even when product is always I® Tor HQ H.

~
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Proof Outline (high level): :
Round 1 - Use measurement-based computation to create g, ---g,g,/00)
Round 2 - Use rewinding ability to make many measurements

- Determine if state is |00) or |++) )




Round 1: Measurement-based computation

-------------------------------------------------------------------------------------------------------------

Ideal situation: Y % Y Y Yy R ?
: Gl 8 8281100)
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Fact (Raussendorf, Browne, Briegel 2008):
For any 2-qubit Clifford gate g, there is a set of X and Y measurements on the Thesetsttstes
re n
2 x 20 grid such that the unmeasured qubits are in the state Pg|00) where the :a?neo )
Pauli P depends on the measurement outcomes. )
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Round 1: Measurement-based computation
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Reason: The usual measurement-based Fact: For any Clifford ¢ and Pauli P
computation technique is adaptive. oP = gPge = (¢PgN)g = P’

_ J _ _J
First gate (g,): Pig; ]00) —— P,g,~Pyg,P g, |00) = Pg,---g,g,00)

Second gate (g,P)): PP P18, 100) = P,g,8,100)
: Problem:
Computing P from P, P,, ..., P, is NC'-hard.

[Scary: The channel p — PpP" for random Pauli P is the completely depolarizing channel. j




Round 2: Many measurements with rewinding

~ - _ N )
Intuition: A single measurement may not reveal Plan: Use repeated measurements to
sufficient information to determine the state, but deduce the stabilizer groups of the state.
many “non-collapsing” measurements might - -
suffice. - Stabilizer group: the group of
_ y Pauli operators that fix the state. (P [y) = |V/>)
11 11
. /1 . a X1
tabil = — b e {1
Stabilizer(” | 00)) 117 Stabilizer(P |[++)) 7Y a (1}
abZ/ b XX
" )

Measurement of Pauli P on state |y):

If aP € Stabilizer(|y)), then outcomeisa € {£1}.

If aP & Stabilizer(|y)), then outcome can be either +1 or — 1.
_ )




Round 2: Many measurements with rewinding

~
Plan: Make many Pauli measurements on the state and hope to

krec:eive outcomes which are both +1 and -1. )

Observations:
XX YY ZZ 1) Pauli operators along any row/column commute,

SO we can measure them simultaneously.
r/ /ZX XY
Y X/ YX



Round 2: Many measurements with rewinding

~
Plan: Make many Pauli measurements on the state and hope to
krec:eive outcomes which are both +1 and -1. )
Observations:
XX < YY x 2/ = —1] 1) Pauli operators along any row/column commute,

SO we can measure them simultaneously.

Y/ x /X x XY
Y < X4 x ¥YX

— I ] 2) If we measure a row, the measurement
outcomes multiply to -1.



Round 2: Many measurements with rewinding

~
Plan: Make many Pauli measurements on the state and hope to
krec:eive outcomes which are both +1 and -1. )
Observations:
XX YY ZZ 1) Pauli operators along any row/column commute,
X X X SO we can measure them simultaneously.
YZ ZX XY 2) If we measure a row, the measurement

X X % outcomes multiply to -1.

ZY XZ YX If we measure a column, the measurement

- - outcomes multiply to +1.

1l 1l 1l



Round 2: Many measurements with rewinding

~
Plan: Make many Pauli measurements on the state and hope to
krec:eive outcomes which are both +1 and -1. )
Observations:
+1 — +
XX | YYI ZZ | 1) Pauli operators along any row/column commute,
| | N T S \ SO we can measure them simultaneously.
— — '+ g
Y/ /X XY 2) If we measure a row, the measurement
-1 - —1; outcomes multiply to -1.
—1 +1 +1
ZY XZ YX If we measure a column, the measurement
—1 +1 +1

outcomes multiply to +1.

3) No consistent way to label the square that
satisfies row/column conditions.



Round 2: Many measurements with rewinding

In previous example, we were able to deduce XY was not in the
stabilizer group of our state, but...

XY does not appear in either stabilizer group

Stabilizer(|00)) = IZZI Stabilizer(|++)) = g
77 XX

: | . . Instead of obtaining an arbitrary non-stabilizer of
Solution: Randomize the input. .
our state, we get a random non-stabilizer.




Open Questions

1) Hardness beyond &L"?

CTheorem: 2-round measurement problem is in &L for Clifford circuits.

2) Allow for classical circuit simulation error?

-
Theorem: NC! reduction still holds when classical circuit errs with

kprobability less than 2/75.

— |Is this optimal? What about &L?

3) Allow the quantum circuit to err?

Theorem (Bravyi, Gosset, Konig, Tomamichel):
Noisy QNC" circuits can solve a relation problem that NC° circuits cannot.

.

— (Can these techniques be ported to the interactive setting?



