A Quantum Query
Complexity Trichotomy
for Regular Languages

Scott Aaronson Daniel Grier Luke Schaeffer
UT Austin MIT MIT

Query complexity - Introduction

‘a

uery complexity of language L C >*

~

Input x € 2" initially hidden. The query complexity of L is the
Lnumber of input symbols revealed by the computation.

_J

Deterministic:

OR={x:x,=1}
D(OR) =n
R(OR) = O(n)

Query complexity - Introduction

a)

uery complexity of language L C >*

Input x € 2" initially hidden. The query complexity of L is the
Lnumber of input symbols revealed by the computation.)

Indexing oracle:) a;,|i)1b) —) a;,|i) b x)

Quantum: The number of calls to the indexing oracle to
determine membership of an input with bounded error.

O(OR) = @(\/%) <«—— Grover search
Q(PARITY) = B(n)

Query complexity - Introduction

rQuery complexity of language L C X* A
Input x € 2" initially hidden. The query complexity of L is the
Lnumber of input symbols revealed by the computation.)

Why query complexity?

- Provable lower bounds

- Lower bounds can suggest efficient algorithms

Regular languages as regular expressions

Regular languages over a finite alphabet

Gasic sets: Combination rules: \
Empty Set % Concatenation AB
Empty string {e} Union AUB

K Literal la € 2} Kleene Star A* J

— A* = a,k>0,a €A
Examples X = {0,1,2} {a)...a 1 k20, q; € A}

S={0lu{l}u{2}=0UluU?2
>* = {¢£,0,1,2,00,01,02, 10, ...}

OR = 0*1(0 U 1)*

AND-OR = 20R2...20R2 = 2(OR2)*
PARITY = (0%10%1)*0%

Regular languages are nice

- Closed under many operations
- Concatenation, Union, Kleene Star
- Complement
- Reversal 0 0

- Natural questions are decidable Q 1 m
- “Is the language infinite?” TN

- Extremely robust definition ~_ 7
- Regular expressions !

- Finite state automata
- Recognized by finite monoids

Finite state automaton for PARITY

Quantum query complexity and regular languages

1X#] AND-OR”

L D J L OR J L PARITY J

o(1) O(y/n) Q(n)

Quantum query trichotomy for regular languages

(N
Trichotomy Theorem: Every regular language has quantum query

complexity ©(1), ®(/n), or On).

v,

— Each query complexity corresponds to a class of regular expressions.

— All upper bounds come from explicit guantum algorithms.

4 R
Classes of regular expressions:

Trivial: Depend on O(1) characters at beginning or end of string.

Star free: Regular expressions without Kleene star operation, but
with the addition of the complement operation.

Regular: General regular expressions.
- _J

—— trivial C star free C regular

Quantum query trichotomy for regular languages

-
Trichotomy Theorem: Every regular language has quantum query

complexity ©(1), ®(/n), or On).

-
Caveat:
Parity on even length strings: PARITY N (ZX)*
Query complexity oscillates between 0 and ®(n).
_
(

Fix: Redefine the standard notion of query complexity:

Query complexity of strings of length up to #,
rather than exactly n.

AND-OR is a star free language

fBasic sets:
Empty Set %
Empty string {e}

K Literal {la € X}

Combination rules:

Concatenation
Union

Complement

AB
AUB

A

~

J

AND-OR = 20R2...20R2 = 2(OR2)* = 2(0*1(0 U 1)*2)*

Exercise...

AND-OR = @20(1 U 2)@20 N 20 N &2

McNaughton’s characterization of star free languages

e R
Theorem [McNaughton]: A language is star free iff it is expressible

_in first-order logic with the less-than relation.

OR:3di st. x;=1

AND-OR:‘lv’i‘v’jEIk| (<PDAXG=DAK=2) = ([<k<)AMg=1)
|

Can extend to any constant number of alternating quantifiers

~)
Consequence: Quantum algorithm for star free languages extends

k’che Grover speed-up to a much larger class of string problems.)

Application:

(:)(\/Z) algorithm for dynamic constant-depth Boolean formulas

Outline for remainder of talk

1) Structure of trichotomy proof

a) Upper bounds

b) Lower bounds

2) O(/n) algorithm for star-free languages

Trichotomy proof: Upper bounds

Algorithms:

Trivial: Only constantly-many symbols of input determine
membership. Constant-size lookup table.

Star free: Challenging. More on this later.

Regular: Linear time deterministic algorithm from machine definition:
“Read-only Turing machines”

0

2% 000
o

Trichotomy proof: Lower bounds

Completing the classification requires:
L ¢ trivial = Q(L) = Q(/n)

L & star free — O(L) = Q(n)

O(/n) algorithm
for star-free languages

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[First attempt: Grover search.

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[First attempt: Grover search.

Grover iterations: O(/n)

Work per iteration: O(n)

Total time: O(n?'?)

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[Second attempt: Grover within Grover.

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[Second attempt: Grover within Grover.

| 000

S =

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[Second attempt: Grover within Grover.

0---000---0

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[Second attempt: Grover within Grover.]

¢ = length of match

Outer Grover: O(\/Z) \

Inner Grover: 0(\/T) + O(\/f) + 0(\/1) + - + 0(\/?‘) = O(\/?)
Total time: O(n)

@)(\/E) quantum algorithm for AND-OR

Idea: Search for a substring 20*2 violating the OR

[Complete: Grover within Grover with multiple marked items.]

20.-. .. 0---000-+0----- 02 |

X : |

£ i |
g . . . h
Grover search with multiple marked items: When there are ¢
Lmarked items, Grover search only requires O(1/n/t) iterations.)

Full strategy:
Exponential search over length of the match: 7 =1, 2,4, 8, ...

Grover search for index in the middle of the 20*2 substring.

Grover/binary search to find 2 on each side at distance at most 7.
Analysis: O(\/nl¢)- 0/ ¢) = O(\/n)
‘ L Inner Grover
Outer Grover

Generalizing the AND-OR algorithm - Splitting

2()...(;)...02 |

20% 1 0*2

~

k
Splitting: Language L C X* splits as UAiBl. If
k i=1
1) L= UAl-Bi for some constant «.
=1

2) Vx € L and decompositions x = uv, 3i such that u € A; and v € B,

_

Example: 20%*2 splits as (20%2)e U (20%)(0*2) U &(20%*2)

Splitting implies infix search

a A

Infix Search: Let language L split as LkJAiBi and suppose
O(Z*A) = O(/n) for all i =
Q(BZ*) = O(y/n) for all i

Then Q(Z*LE*) = O(/n).

_

Proof: Use same algorithm from AND-OR.

Schutzenberger’s theorem and star-free languages

@chﬁtzenberger’s theorem: (very informal) \
Given any star-free language, there is a hierarchy of component star-
free languages. A language at one level of the hierarchy can be
expressed as a combination of “simpler” languages from lower levels
In the following way:

. (Z*A, N AyS*) — SHAT*

_____________ - J

— Remarkable fact: A, splits into simpler languages.

rPlan: Recursive algorithm: j
LFind O(\/ﬁ) algorithms for all component languages. J

rNot obvious: this will imply O(\/ﬁ) algorithms for prefix and suffix
. problems: X*A,, A,X*, ...

Regular languages and monoids

Gefinition: A language L is recognized by a monoid M if there A
exists a homomorphism ¢: £* - M and a subset § C M such that

. L={weX*:pw) esS) y

—> A monoid is a semi-group with an identity element.

01 Q. {0,1}* - M
Monoid forOR: M: 0[]0 1 p(e) = p0) =0 §= {1}
1111 p(1) =1

Theorem (Schutzenberger): A language is star free iff it is
recognized by a finite aperiodic monoid.

—— Aperiodic: for all m € M there exists n > 0 such that m" = m"*.

Proof sketch: (X*A; N A,X*) — Z*AX*

Context-free languages break trichotomy

4_\ push/pop

'_/
Theorem: For every algebraic number ¢ € [1/2,1], there exists a
context-free language L such that O(L) = ®n°).

—— O(n‘t%) and Q) for all ¢ > 0 for all limit computable ¢ € [1/2,1].

a)
Theorem: If L is context free and Q(L) = ®(n°), then c is

limit computable.

\— _J

Open Problems

1) Can you remove the log factors from the star-free algorithm?

2) Complete the classification for context-free languages. Can a CFL
have query complexity O(n°) for some ¢ € (0,1/2)?

3) Applications of star-free algorithm?

