A Quantum Query Complexity Trichotomy for Regular Languages

Scott Aaronson UT Austin

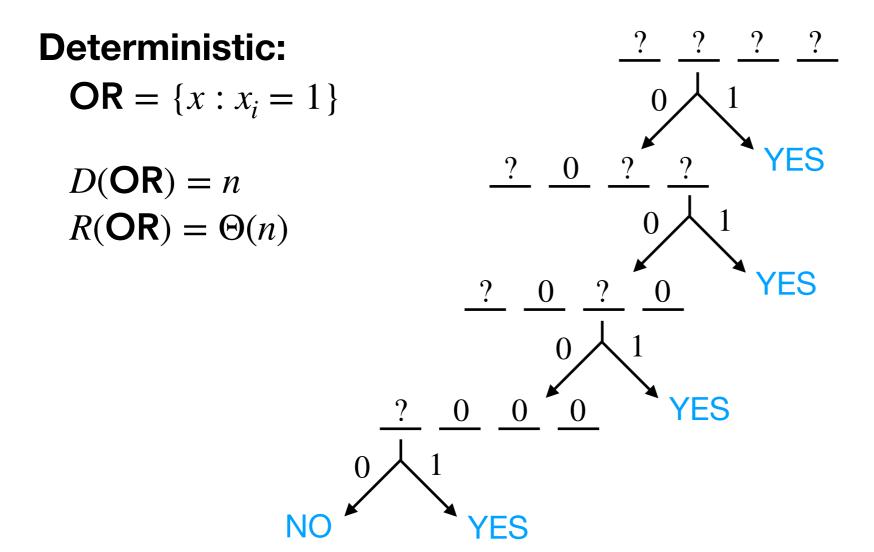
Daniel GrierMIT

Luke Schaeffer MIT

Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.



Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.

Indexing oracle:
$$\sum \alpha_{i,b} |i\rangle |b\rangle \rightarrow \sum \alpha_{i,b} |i\rangle |b \oplus x_i\rangle$$

Quantum: The number of calls to the indexing oracle to determine membership of an input with bounded error.

$$Q(\mathbf{OR}) = \Theta(\sqrt{n})$$
 Grover search $Q(\mathbf{PARITY}) = \Theta(n)$

Query complexity - Introduction

Query complexity of language $L \subseteq \Sigma^*$

Input $x \in \Sigma^n$ initially hidden. The query complexity of L is the number of input symbols revealed by the computation.

Why query complexity?

- Provable lower bounds
- Lower bounds can suggest efficient algorithms

Regular languages as regular expressions

Regular languages over a finite alphabet Σ

Basic sets:

Empty Set Ø

Empty string $\{\varepsilon\}$

Literal $\{a \in \Sigma\}$

Combination rules:

Concatenation AB

Union $A \cup B$

 $A^* = \{a_1...a_k : k \ge 0, a_i \in A\}$

Kleene Star A^*

Examples
$$\Sigma = \{0,1,2\}$$

$$\Sigma = \{0\} \cup \{1\} \cup \{2\} = 0 \cup 1 \cup 2$$

$$\Sigma^* = \{\varepsilon, 0, 1, 2, 00, 01, 02, 10, \dots\}$$

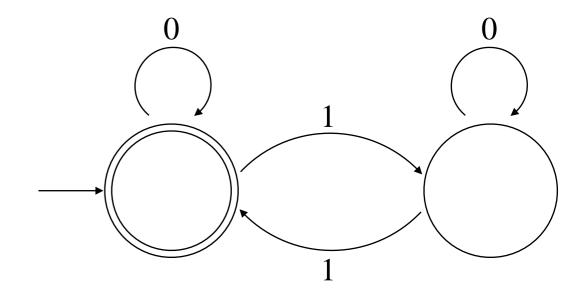
$$OR = 0*1(0 \cup 1)*$$

$$AND-OR = 2OR2...2OR2 = 2(OR2)*$$

PARITY =
$$(0*10*1)*0*$$

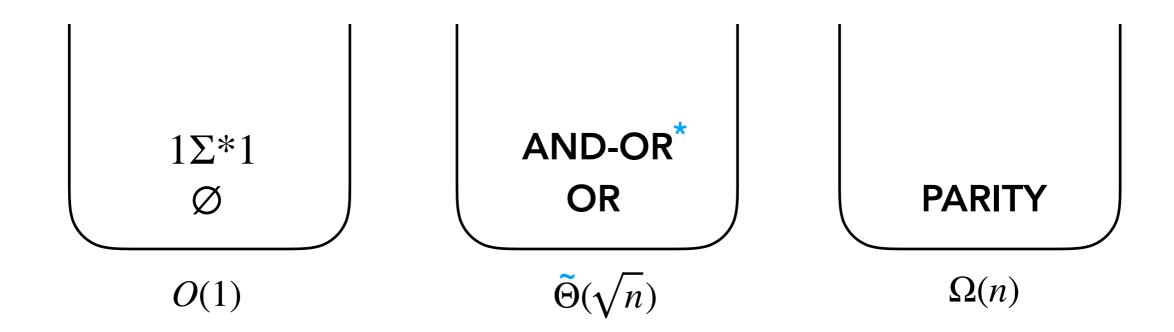
Regular languages are nice

- Closed under many operations
 - Concatenation, Union, Kleene Star
 - Complement
 - Reversal
- Natural questions are decidable
 - "Is the language infinite?"
- Extremely robust definition
 - Regular expressions
 - Finite state automata
 - Recognized by finite monoids



Finite state automaton for **PARITY**

Quantum query complexity and regular languages



Quantum query trichotomy for regular languages

Trichotomy Theorem: Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt{n})$, or $\Theta(n)$.

- Each query complexity corresponds to a class of regular expressions.
- All upper bounds come from explicit quantum algorithms.

Classes of regular expressions:

Trivial: Depend on O(1) characters at beginning or end of string.

Star free: Regular expressions without Kleene star operation, but

with the addition of the complement operation.

Regular: General regular expressions.

trivial ⊊ star free ⊊ regular

Quantum query trichotomy for regular languages

Trichotomy Theorem: Every regular language has quantum query complexity $\Theta(1)$, $\tilde{\Theta}(\sqrt{n})$, or $\Theta(n)$.

Caveat:

Parity on even length strings: **PARITY** \cap $(\Sigma\Sigma)^*$

Query complexity oscillates between 0 and $\Theta(n)$.

Fix: Redefine the standard notion of query complexity: Query complexity of strings of length **up to** n, rather than exactly n.

AND-OR is a star free language

Basic sets:

Empty Set Ø

Empty string $\{\varepsilon\}$

Literal $\{a \in \Sigma\}$

Combination rules:

Concatenation AB

Union $A \cup B$

Complement \overline{A}

AND-OR = 2**OR**2...2**OR**2 = 2(**OR**2)* = $2(0*1(0 \cup 1)*2)*$

Exercise...

 $\mathbf{AND\text{-}OR} = \overline{\varnothing 2} \overline{\overline{\varnothing} (1 \cup 2)} \overline{\varnothing} 2 \overline{\varnothing} \cap 2 \overline{\varnothing} \cap \overline{\varnothing} 2$

McNaughton's characterization of star free languages

Theorem [McNaughton]: A language is star free iff it is expressible in first-order logic with the less-than relation.

OR : $\exists i$ st. $x_i = 1$

AND-OR:
$$\forall i \forall j \exists k \ (i < j) \land (x_i = 2) \land (x_j = 2) \implies (i < k < j) \land (x_k = 1)$$

Can extend to any constant number of alternating quantifiers

Consequence: Quantum algorithm for star free languages extends the Grover speed-up to a much larger class of string problems.

Application:

 $\tilde{\Theta}(\sqrt{n})$ algorithm for <u>dynamic</u> constant-depth Boolean formulas

Outline for remainder of talk

- 1) Structure of trichotomy proof
 - a) Upper bounds
 - b) Lower bounds

2) $\tilde{O}(\sqrt{n})$ algorithm for star-free languages

Trichotomy proof: Upper bounds

Algorithms:

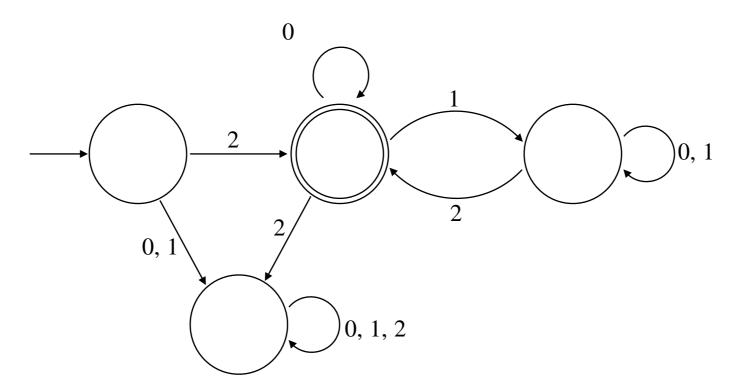
Trivial: Only constantly-many symbols of input determine

membership. Constant-size lookup table.

Star free: Challenging. More on this later.

Regular: Linear time deterministic algorithm from machine definition:

"Read-only Turing machines"



Trichotomy proof: Lower bounds

Completing the classification requires:

$$L \notin \text{trivial} \implies Q(L) = \Omega(\sqrt{n})$$

$$L \notin \text{star free} \implies Q(L) = \Omega(n)$$

$\tilde{O}(\sqrt{n})$ algorithm for star-free languages

Idea: Search for a substring 20*2 violating the OR

First attempt: Grover search.

Idea: Search for a substring 20*2 violating the **OR**

First attempt: Grover search.

$$x:$$
 $20\cdots0\cdots02$

Grover iterations: $O(\sqrt{n})$

Work per iteration: O(n)

Total time: $O(n^{3/2})$

Idea: Search for a substring 20*2 violating the OR

Second attempt: Grover within Grover.

$$x:$$
 0

Idea: Search for a substring 20*2 violating the OR

Second attempt: Grover within Grover.

$$x:$$
 000

Idea: Search for a substring 20*2 violating the **OR**

Second attempt: Grover within Grover.

$$x:$$
 $0\cdots 000\cdots 0$

Idea: Search for a substring 20*2 violating the **OR**

Second attempt: Grover within Grover.

$$x:$$

$$= \underbrace{20 \cdots 000 \cdots 000 \cdots 02}_{}$$

Outer Grover:
$$O(\sqrt{n})$$

Inner Grover: $O(\sqrt{1}) + O(\sqrt{2}) + O(\sqrt{4}) + \dots + O(\sqrt{2^k}) = \tilde{O}(\sqrt{\ell})$

 $\ell = \text{length of match}$

Total time: $\tilde{O}(n)$

Idea: Search for a substring 20*2 violating the OR

Complete: Grover within Grover with multiple marked items.

$$x:$$

$$= \underbrace{20 \cdots 000 \cdots 0 \cdots 02}_{}$$

Grover search with multiple marked items: When there are t marked items, Grover search only requires $O(\sqrt{n/t})$ iterations.

Full strategy:

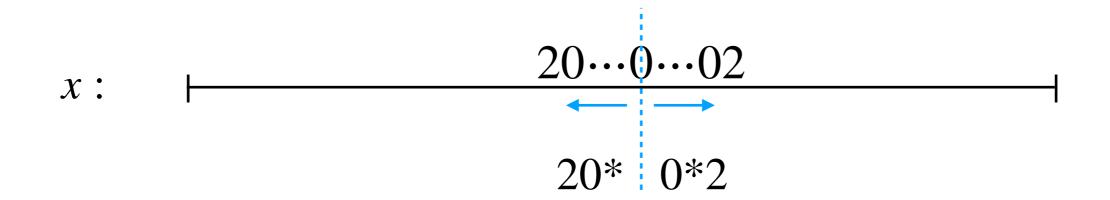
Exponential search over length of the match: $\ell = 1, 2, 4, 8, ...$

Grover search for index in the middle of the 20*2 substring.

Grover/binary search to find 2 on each side at distance at most ℓ .

Analysis:
$$O(\sqrt{n/\ell}) \cdot \tilde{O}(\sqrt{\ell}) = \tilde{O}(\sqrt{n})$$
Inner Grover
Outer Grover

Generalizing the AND-OR algorithm - Splitting



Splitting: Language $L \subseteq \Sigma^*$ splits as $\bigcup_{i=1}^{\kappa} A_i B_i$ if

- 1) $L = \bigcup_{i=1}^{\kappa} A_i B_i$ for some constant k.
- 2) $\forall x \in L$ and decompositions x = uv, $\exists i$ such that $u \in A_i$ and $v \in B_i$

Example: 20*2 splits as $(20*2)\varepsilon \cup (20*)(0*2) \cup \varepsilon(20*2)$

Splitting implies infix search

Infix Search: Let language L split as $\bigcup_{i=1}^{\kappa} A_i B_i$ and suppose

$$Q(\Sigma^*A_i) = \tilde{O}(\sqrt{n})$$
 for all i

$$Q(B_i\Sigma^*) = \tilde{O}(\sqrt{n})$$
 for all i

Then
$$Q(\Sigma^*L\Sigma^*) = \tilde{O}(\sqrt{n})$$
.

Proof: Use same algorithm from **AND-OR**.

$$x:$$

$$\begin{array}{c}
?...?..?\\
\hline
A_i B_i
\end{array}$$

Schützenberger's theorem and star-free languages

Schützenberger's theorem: (very informal)

Given any star-free language, there is a hierarchy of component starfree languages. A language at one level of the hierarchy can be expressed as a combination of "simpler" languages from lower levels in the following way:

$$(\Sigma^*A_1\cap A_2\Sigma^*)-\Sigma^*A_3\Sigma^*$$

 \rightarrow Remarkable fact: A_3 splits into simpler languages.

Plan: Recursive algorithm:

Find $\tilde{O}(\sqrt{n})$ algorithms for all component languages.

Not obvious: this will imply $\tilde{O}(\sqrt{n})$ algorithms for prefix and suffix

problems: $\Sigma * A_1, A_2 \Sigma *, ...$

Regular languages and monoids

Definition: A language L is recognized by a monoid M if there exists a homomorphism $\varphi \colon \Sigma^* \to M$ and a subset $S \subseteq M$ such that

$$L = \{w \in \Sigma^* : \varphi(w) \in S\}$$

A monoid is a semi-group with an identity element.

Monoid for **OR**:
$$M: \begin{array}{c|c} & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 1 \end{array}$$

$$\frac{\varphi \colon \{0,1\}^* \to M}{\varphi(\varepsilon) = \varphi(0) = \mathbf{0}}$$

$$\varphi(1) = \mathbf{1}$$

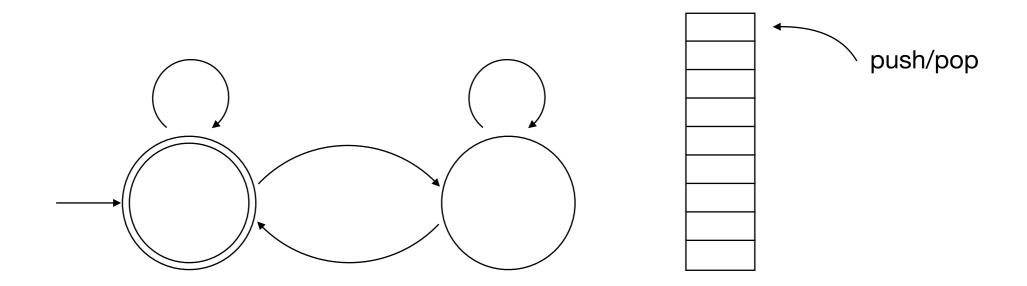
$$S = \{\mathbf{1}\}$$

Theorem (Schützenberger): A language is star free iff it is recognized by a *finite aperiodic* monoid.

- Aperiodic: for all $m \in M$ there exists $n \ge 0$ such that $m^n = m^{n+1}$.

Proof sketch: $(\Sigma^*A_1 \cap A_2\Sigma^*) - \Sigma^*A_3\Sigma^*$

Context-free languages break trichotomy



Theorem: For every algebraic number $c \in [1/2,1]$, there exists a context-free language L such that $Q(L) = \Theta(n^c)$.

→ $O(n^{c+\epsilon})$ and $\Omega(n^{c-\epsilon})$ for all $\epsilon \geq 0$ for all limit computable $c \in [1/2,1]$.

Theorem: If *L* is context free and $Q(L) = \Theta(n^c)$, then *c* is limit computable.

Open Problems

1) Can you remove the log factors from the star-free algorithm?

2) Complete the classification for context-free languages. Can a CFL have query complexity $\tilde{\Theta}(n^c)$ for some $c \in (0,1/2)$?

3) Applications of star-free algorithm?