The Classification of Reversible Bit Operations

Scott Aaronson UT Austin Daniel Grier MIT Luke Schaeffer MIT

Motivation

- ► Problem: Given a set of quantum gates, which unitaries do they generate?
- ► Non-universal
 - ▶ 1-qubit gates
 - ► Classical reversible gates such as CNOT and Toffoli
 - ► Clifford gates [Gottesman-Knill 1998]
 - ► Toffoli + Hadamard
- ▶ Universal
 - ► Random 2-qubit gate
 - ► CNOT + all single-qubit gates
- ► This is hard...

Classical Gates!

► New Problem: Given a set of *classical reversible* gates, are they universal? If not, what do they generate?

Definition

Reversible gate - bijective function $f: \{0,1\}^n \to \{0,1\}^n$.

Wait...

- ► Hasn't this problem been solved before?
- ▶ Boolean logic gates, i.e., $f: \{0,1\}^n \to \{0,1\}$
 - ► Completely classified [Post 1941]
 - ► AND, OR, NOT are universal
 - ► XOR generates all linear functions
- ▶ 1980's Research by Bennett, Toffoli, Fredkin, Landauer, . . .

Toffoli Gate	Fredkin Gate
$c_1 \longrightarrow c_1$	$c \longrightarrow c$
c_2 c_2	$x \longrightarrow c(x \oplus y) \oplus x$
$t \longrightarrow c_1c_2 \oplus t$	$y \stackrel{\downarrow}{-\!$

▶ Lloyd (1992), De Vos & Storme (2004): Classify all reversible gate sets when leftover garbage bits are allowed.

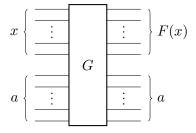
Garbage is bad for quantum computation

Suppose trying to construct $F: \{0,1\}^n \to \{0,1\}^n$

$$-G\left(\sum_{x}\alpha_{x}|x\rangle|0\rangle\right) = \sum_{x}\alpha_{x}|F(x)\rangle|\operatorname{gar}(x)\rangle \to \mathsf{BAD}$$

Garbage is bad for quantum computation

Suppose trying to construct $F:\{0,1\}^n \to \{0,1\}^n$



Model

Suppose we have a set of gates $S = \{G_1, G_2, \ldots\}$. The *class* $\langle S \rangle$ is its closure under the circuit building operations:

- ▶ Composition Rule If $G, F \in \langle S \rangle$, then $G \circ F \in \langle S \rangle$.
- ▶ Extension Rule If $G \in \langle S \rangle$, then $G \otimes I \in \langle S \rangle$.
- ▶ Swap Rule $SWAP \in \langle S \rangle$.
- ▶ Ancilla Rule If $G \in \langle S \rangle$, then

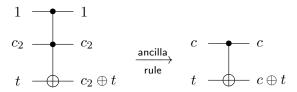
$$G(x,a) = F(x), a$$

for all x implies $F \in \langle S \rangle$.

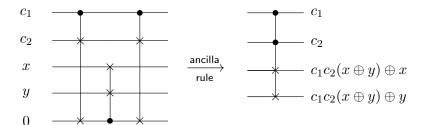
Corollary

If $G \in \langle S \rangle$, then $G^{-1} \in \langle S \rangle$.

Toffoli generates CNOT

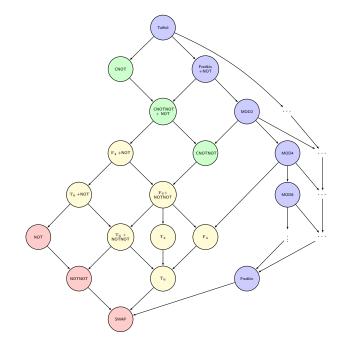


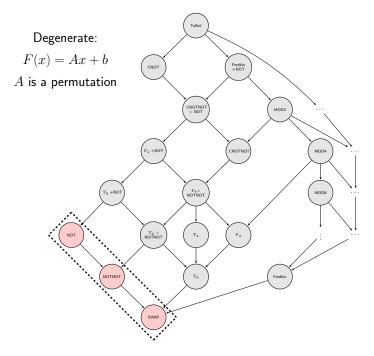
Fredkin generates controlled-controlled-SWAP

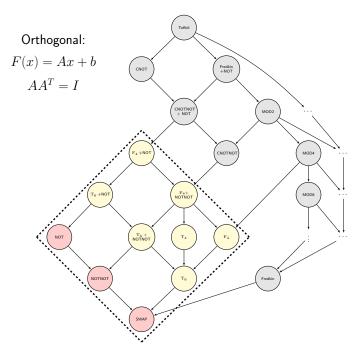


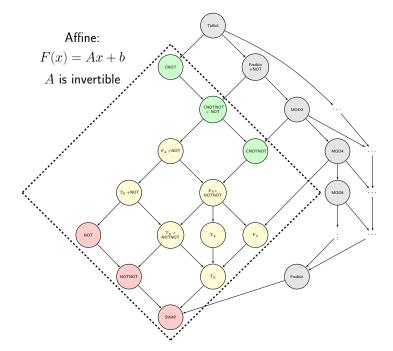
Main Theorem

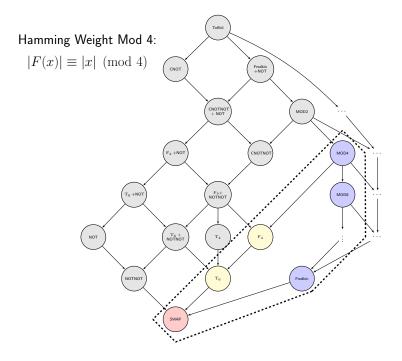
Any set of reversible gates generates one of the classes in the following lattice:





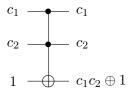






Proof Techniques: Uncomputing

Suppose we want to generate $F:\{0,1\}^n \to \{0,1\}^n$ using Toffoli



Observation

Last bit is $NAND(c_1, c_2)$.

$$x \to x, gar(x), F(x)$$

Proof Techniques: Uncomputing

$$F: \{0,1\}^n \to \{0,1\}^n$$

$$x\\ \rightarrow x, \mathsf{gar}_1(x), F(x)\\ \rightarrow x, \mathsf{gar}_1(x), F(x), F(x)\\ \rightarrow x, F(x)\\ \rightarrow x, F(x), \mathsf{gar}_2(F(x)), x\\ \rightarrow F(x), \mathsf{gar}_2(F(x)), x\\ \rightarrow F(x)$$

Theorem (AGS)

Given a set of reversible gates S. Any function $F \in \langle S \rangle$ can be constructed from gates in S using only O(1) ancilla bits.

Open Questions

- ► What other gate sets can we classify?
 - ► Clifford gates [GS 2015]
 - ▶ 1 and 2-qubit gates
 - ► Hamiltonians
- ► Different ancilla rules?
- ► Different arity?