Deciding the Winner of an Arbitrary Finite Poset Game is PSPACE-complete

Daniel Grier University of South Carolina (USA) grierd@email.sc.edu

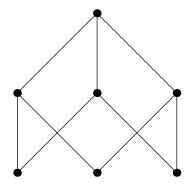
July 11, 2013

Outline

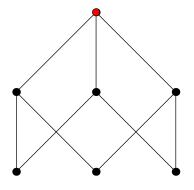
- Introduce Poset Games
- Positive Results
- Introduce Node Kayles
- Reduce Node Kayles to Poset Games

What is a Poset Game?

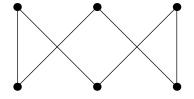
- ► The game starts with a finite partially ordered set (poset).
- Players take turns choosing an element of the poset, removing it and all elements greater than it.
- The first player unable to move loses.



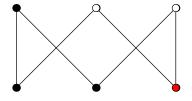
First Player



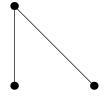
First Player



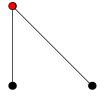
Second Player



Second Player



First Player



First Player

•

Second Player

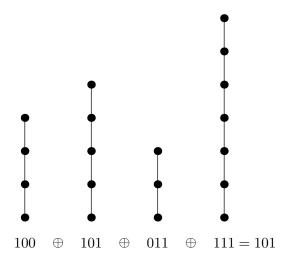
Second Player

D

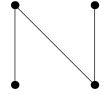
First Player

First Player

Nim [Bouton 1901]



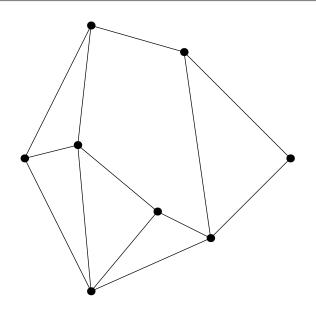
N-free Poset Games

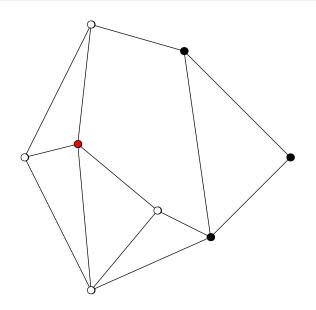


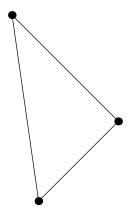
Theorem [Deuber, Thomassé 1996]

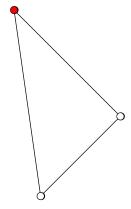
There exists a polynomial time algorithm to find the winner of any poset game that does not contain an induced 'N'.

- ► The game starts with a simple undirected graph.
- Players take turns choosing a vertex of the graph, removing it and all of its neighbors.
- The first player unable to move loses.









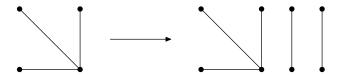
Theorem [Schaefer 1978]

Node Kayles is PSPACE-complete.

Reduction Preliminaries

What we want:

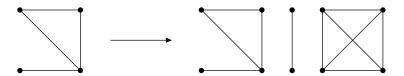
- 1. Number of edges in the Node Kayles graph to be odd.
- 2. For every vertex in the Node Kayles graph, there is an edge that is not incident to it.



Reduction Preliminaries

What we want:

- 1. Number of edges in the Node Kayles graph to be odd.
- 2. For every vertex in the Node Kayles graph, there is an edge that is not incident to it.

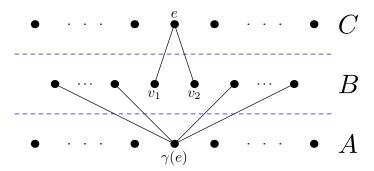


Reduction

Create poset game with three levels A < B < C where

- ▶ The elements of *B* are the vertices of the Node Kayles graph.
- ▶ A and C are copies of the edges in the Node Kayles graph.

For each $e = (v_1, v_2)$ edge in the Node Kayles graph add the following edges to poset:

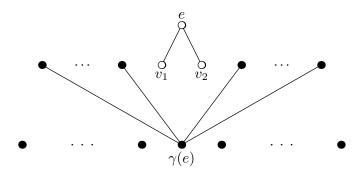


We will argue inductively and assume that no moves in A or C have yet been chosen.

We will call the first player to choose a point in either A or C the challenger, making the other player the responder.

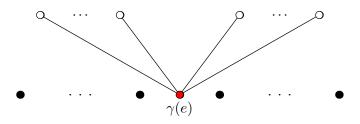
Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.



Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.



Challenger

Parity of bottom: 1

Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.

Responder

Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.

• ... • ... •

• . . .

Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.

Challenger

Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.

Challenger

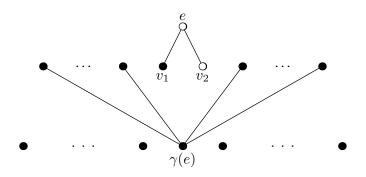
Lemma 1

If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.

Responder

Lemma 2

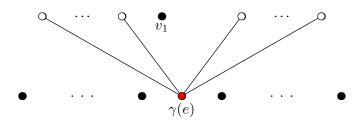
If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.



Parity of bottom: 1

Lemma 2

If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.



Challenger

Parity of bottom: 1

Lemma 2

If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.

 v_1

. . .

• . . .

Responder

Lemma 2

If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.

 v_1

.

• • • •

Parity of bottom: 0

Responder

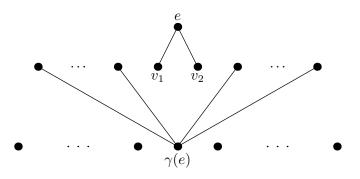
Lemma 2

If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.

Challenger

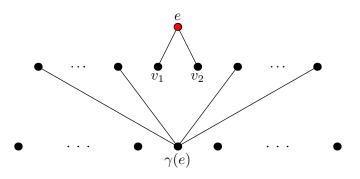
Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Lemma 3

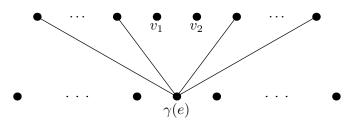
If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Challenger

Lemma 3

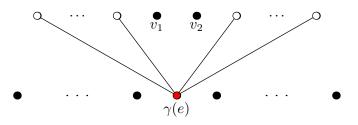
If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Responder

Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Responder

Lemma 3

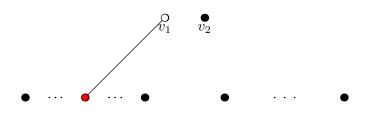
If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.

• • • • • • • • • • • • •

Challenger

Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Challenger

Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.

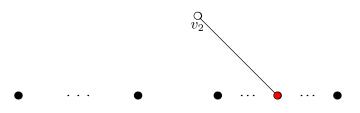
• • • •

• . . .

Responder

Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.



Responder

Lemma 3

If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.

Challenger

Recapitulation

- If both v_1 and v_2 have been chosen, then $\gamma(e)$ is a winning move.
- If exactly one of v_1 and v_2 has been chosen, then $\gamma(e)$ is a losing move.
- If neither v_1 nor v_2 has been chosen, then both e and $\gamma(e)$ are losing moves.

Open Questions

- ► Two Level Poset Games
- ▶ Blue-Red Poset Games