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Permanent Review

Germanent: Given n x n matrix A = {a; ; } j
per(A) = Z Hai,a(i)
k c€S, i=1 J
Example:
0 —1 2
A=1|3 4 =2
1 2 1

per(A) = 0+0—-3 +2+12 +8 =19




Permanent complexity

(Ryser’s/Glynn’s formula: Permanent can be computed in time O(n2"). )

CQuestion: Can the permanent be efficiently computed? )

L— Probably not: PER € PH — PH collapses

Theorem [Valiant (1979)]: The permanent of a matrix is #P-hard to compute.

C&P-hardness: Let PER be an oracle which computes the permanent of a matrix.\
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Permanent counts cycle covers
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Combinatorial interpretation:

- If A is adjacency matrix, then
per(A) = the number of cycle covers of graph.

- If A is adjacency matrix with edge weights, then
per(A) = the sum of the weighted cycle covers of graph.



Valiant’s reduction

Idea behind Valiant’s proof: Construct graph such that the weighted cycle covers
correspond to the number of solutions to a 3SAT formula.
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Figure: A single “interchange” in Valiant’s original proof



Going beyond Valiant’s reduction

Drawbacks to Valiant’s reduction:

1) Relies on complicated cycle cover gadgets

- Ben-Dor and Halevi (1993): Simplified cycle cover argument

- Terry Rudolph (2009): Built subclass of quantum circuits with amplitudes
proportional to the permanent

- Scott Aaronson (2011): #P-hardness of permanent from linear optics

2) Not suited for “structured” matrices

- Invertible: Valiant’s matrices are probably invertible, but tedious to prove

- Unitary: Valiant’s matrices are not unitary, and no obvious way forward

Plan: Modify Aaronson’s proof and use quantum reductions to handle classes of
matrices not suited for reductions based on cycle covers.




#P-hardness for new classes of matrices

Gheorem: The permanent of an n X n matrix A in any of the classical Lie \
groups over the complex numbers is #P-hard:
General linear: A € GL(n) iff det(A) # 0
Orthogonal: A € O(n) iff AAT =1,

Symplectic: A € Sp(2n) iff ATQA = Q where Q = (_(}n Ig )

rTheorem: Let p # 2, 3 be prime. There exists a finite field of characteristic p,
namely IF,4, such that the permanent of an orthogonal matrix in I¥,4 is hard for

Che class Mod,,P. y

J
<

p = 2: Permanent = determinant
p = 3 : Nontrivial algorithm due to Kogan (1996)

—— Dichotomy

Theorem: The permanent of an orthogonal matrix over I¥,, is Mod,P-hard for
1/16th of all primes.




Outline of Aaronson'’s proof

rlnput: Given polynomially sized circuit C': {0,1}" — {0, 1}

Ac:= » (-1)9@
L xe{0,1}m

Output: Number of unsatisfying assignments minus satisfying assignments to C

~

J

< our contribution >
[

@ €)

Encode A into the Convert () into a linear
transition amplitude of optical network L

a quantum circuit ()

over gqubits

®

Use correspondence
between linear optics
and permanents

Ac x{0...0/Q0...0) o (1,0,...]¢(L)[1,0,...)

per(LL])




Comparison of linear optics

Quantum computing with qudits

Linear optics with photons

States: |¢> - ((Cm)®n

Operations: U € U(mn)

States: ‘¢> c ((Cm)@n

l

symmetric tensor product

1
Ul@...@vnza ZUU(U@"’@UU(TL)
oES,

Operations: L(Xm for L. € U(m)




Linear Optics - States

rStates: n photons and m modes \

photons ~ indistinguishable balls
&modes ~ distinct bins/locations J

O
O
L 1O

Notation: Let |s1,s2,...,5m) be the state with s1 photons in the first mode, S2
In the second, and so on.

For example |1, ]., 1, 0, O, 0> -+ |0, 2, 0, O, 1, 0>
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Linear Optics - Transformations

Idea: Linear optical transformation is specified by its action on a single photon.
Apply homomorphism to lift to entire Hilbert space for multiple photons.

- )

¥-transition formula: Given m X m unitary [, the amplitude from state
|S> — ’81, > A Sm> to state |T> = |t1,t2, c. ,tm> 1S

per(LS,T)
\/81!82! ce Sm'tl'tg' “e tm'

(T (L) |5) =

where L s 1 is the matrix obtained by taking
- S; copies of row ¢ from L

L t; copies of column i from L )
Example:
11y 9= 1 (1 1)
Lop = — 2,0|p 1,1
b= (1Y) m_po DTl 1) @@L S

7
CObservatlon If |S) =1|T)=11,...,1), then(T| o(L) |S) = per(L). )




Outline of #P-hardness proof

rlnput: Given polynomially sized circuit C': {0,1}" — {0, 1}

Ac:= » (-1)9@
L xe{0,1}m

Output: Number of satisfying assignments minus unsatisfying assignments to C

~
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Encode A( into the Convert () into a linear
transition amplitude of | optical network L

a quantum circuit @

over gqubits

®

Use correspondence
between linear optics
and permanents



Postselected linear optics is quantum universal

~

Theorem [Knill, Laflamme, Milburn (2001)]:
Postselected linear optical circuits are universal for quantum computation.

Formally, given quantum circuit ¢) with polynomially many CSIGN and single-
qubit gates, there exists linear optical circuit L with polynomially many modes
such that

1
:4_F<O"'O|Q|O"'O>

(I e(L)|I)
where,
|I> — \(),1,(),1,...,0,1)

[' = number of CSIGN gates in ()

_

~

Note: CSIGN + single-qubits gates are universal for quantum computation
CSIGN |.C131332> — (—1)331332 ‘33133‘2>

rTheorem [Aaronson (2011)]: @ not unitary\
A
e = (0...0[Q0...0) = 47 (1] (L) 1) = 4"per(Ly,;)

_
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KLM protocol - representing states
(. )

Theorem [Knill, Laflamme, Milburn (2001)]:
Given quantum circuit () with polynomially many CSIGN and single-qubit gates,
there exists linear optical circuit L with polynomially many modes such that

(I (L)1) = 35 (001 Q[0-+-0)

LWhere |I>:|071707177071> J

Representing qubits with linear optical states:
Problem: qubit is either in state |0)or |1), but number of photons is conserved
Solution: use two modes and one photon to encode a single qubit

Dual rail encoding

----------------------------

— This is the source of non-unitarity in Aaronson’s proof

quE)its linear optical state



Add new encoding phase to KLM

~

Goal: Construct linear optical circuit L from () such that

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

_

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

1,1,1,1)

Encoding gadget —
0,1,2, P

|

dual rail encoding postselected photon

dumpster




Add new encoding phase to KLM

~

Goal: Construct linear optical circuit L from () such that

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

\_

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

1,1,1,1)
Encoding gadget —

0,1,2,1)
Decoding gadget —

1,1,1,1)



Putting it all together

rTheorem
%:m. 0/Q10...0)
= (—V6)" (3 ;) 1,...,1 (@) |1,...,1)
= (—V6)" <3\/§> per(L)
- T
unitary

How do you find gadgets?

1. Guess transformation

2. Use constraint solver




Permanent hardness over finite fields

(Theorem: Permanent is #P-hard for unitary matrices. )

v

Gheorem: Let p # 2, 3 be prime. There exists a finite field of characteristic p,
namely I¥,4, such that the permanent of an orthogonal matrix in I« is Mod,,P-

Lhard. J

Proof: Inspect gadgets carefully

~

All entries in Q(«
e —
E:% _02 ‘7 @—\/2+f+\/3+f
_ 2\/_
1 ( 2 f —2\/5 \

3v2 | —V6+2V6 V6-2v6 —/3+6 %3—
\-v6-2V6 —v6+2/6 —v3—6 —¢3+\/6)




Summarizing matrix permanent complexity

cnxn SO(n) | {0,1}™™ | 2T Az > 0
exact #P-hard #P-hard #P-hard #P-hard
[Valiant 79] [GS 2017] [Valiant 79] [GS 2017]
apbroximate #P-hard #P-hard FPTAS oo
PP Valiant 79] | [GS2017] | [JSV 2004] e

ﬂ)pen Problems:

\_

~

- |Is there a polynomial-time approximation algorithm for permanents of
positive-semidefinite matrices?
- best known: polynomial time 4.84" -approximation [AGGS 2017]

- Are orthogonal permanents over F,, hard for Mod,P forall p # 2,37

- Are there more insights about the permanent to be gained through
this linear optical lens?
- [CCG 2016] : under restricted conditions on the eigenvalues, can
outperform Gurvits’s additive approximation algorithm

j




