New Hardness Results for the Permanent Using Linear Optics

<u>Daniel Grier</u> Luke Schaeffer MIT

Permanent Review

Permanent: Given $n \times n$ matrix $A = \{a_{i,j}\}$

$$per(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

Example:

$$A = \begin{pmatrix} 0 & -1 & 2 \\ 3 & 4 & -2 \\ 1 & 2 & 1 \end{pmatrix}$$

$$per(A) = 0 + 0 - 3 + 2 + 12 + 8 = 19$$

Permanent complexity

Ryser's/Glynn's formula: Permanent can be computed in time $O(n2^n)$.

Question: Can the permanent be efficiently computed?

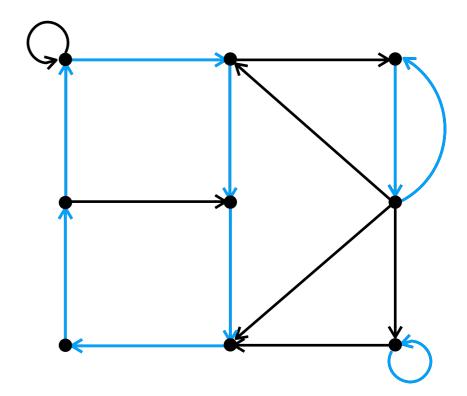
 \longrightarrow Probably not: PER \in PH \Longrightarrow PH collapses

Theorem [Valiant (1979)]: The permanent of a matrix is #P-hard to compute.

#P-hardness: Let PER be an oracle which computes the permanent of a matrix.

$$\#P \subseteq FP^{PER}$$

Permanent counts cycle covers



Combinatorial interpretation:

- If A is adjacency matrix, then per(A) = the number of cycle covers of graph.
- If A is adjacency matrix with edge weights, then per(A) = the sum of the weighted cycle covers of graph.

Valiant's reduction

Idea behind Valiant's proof: Construct graph such that the weighted cycle covers correspond to the number of solutions to a 3SAT formula.

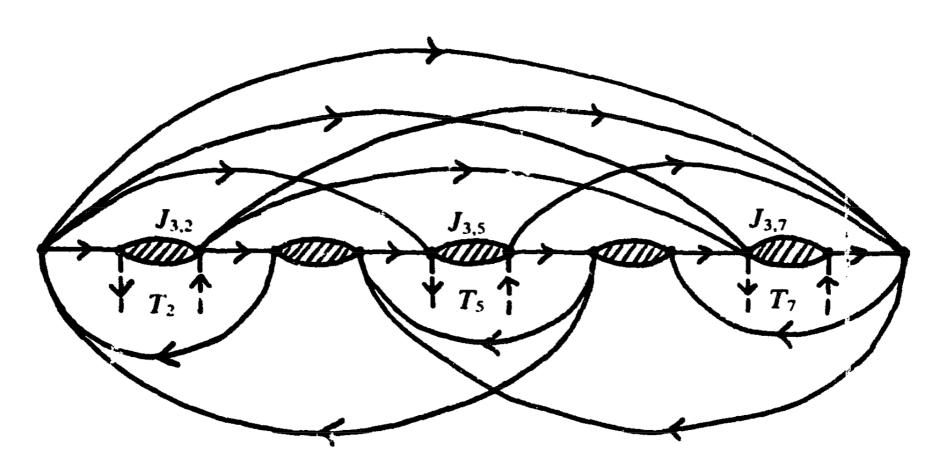


Figure: A single "interchange" in Valiant's original proof

Going beyond Valiant's reduction

Drawbacks to Valiant's reduction:

- 1) Relies on complicated cycle cover gadgets
 - Ben-Dor and Halevi (1993): Simplified cycle cover argument
 - Terry Rudolph (2009): Built subclass of quantum circuits with amplitudes proportional to the permanent
 - Scott Aaronson (2011): #P-hardness of permanent from linear optics

Why Quantum? Offload difficulty onto well-known theorems in linear optics

- 2) Not suited for "structured" matrices
 - Invertible: Valiant's matrices are probably invertible, but tedious to prove
 - Unitary: Valiant's matrices are not unitary, and no obvious way forward

Plan: Modify Aaronson's proof and use quantum reductions to handle classes of matrices not suited for reductions based on cycle covers.

#P-hardness for new classes of matrices

Theorem: The permanent of an $n \times n$ matrix A in any of the classical Lie groups over the complex numbers is #P-hard:

General linear: $A \in GL(n)$ iff $det(A) \neq 0$

Orthogonal: $A \in O(n)$ iff $AA^T = I_n$

Unitary: $A \in \mathrm{U}(n)$ iff $AA^{\dagger} = I_n$

Symplectic: $A \in \operatorname{Sp}(2n)$ iff $A^T \Omega A = \Omega$ where $\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$

Theorem: Let $p \neq 2, 3$ be prime. There exists a finite field of characteristic p, namely \mathbb{F}_{p^4} , such that the permanent of an orthogonal matrix in \mathbb{F}_{p^4} is hard for the class $\mathsf{Mod}_p\mathsf{P}$.

Dichotomy

p=2: Permanent = determinant

p=3: Nontrivial algorithm due to Kogan (1996)

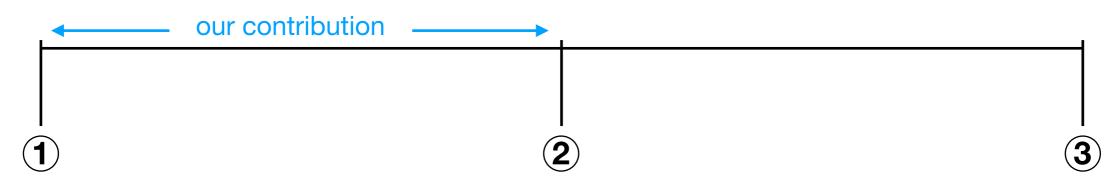
Theorem: The permanent of an orthogonal matrix over \mathbb{F}_p is $\mathsf{Mod}_p\mathsf{P}\text{-hard}$ for 1/16th of all primes.

Outline of Aaronson's proof

Input: Given polynomially sized circuit $C: \{0,1\}^n \to \{0,1\}$

Output: Number of unsatisfying assignments minus satisfying assignments to C

$$\Delta_C := \sum_{x \in \{0,1\}^n} (-1)^{C(x)}$$



Encode Δ_C into the transition amplitude of a quantum circuit Q over qubits

Convert Q into a linear optical network ${\cal L}$

Use correspondence between linear optics and permanents

$$\Delta_C \propto \langle 0 \dots 0 | Q | 0 \dots 0 \rangle \quad \propto \quad \langle 1, 0, \dots | \varphi(L) | 1, 0, \dots \rangle \quad \propto \quad \text{per}(L_{I,I})$$

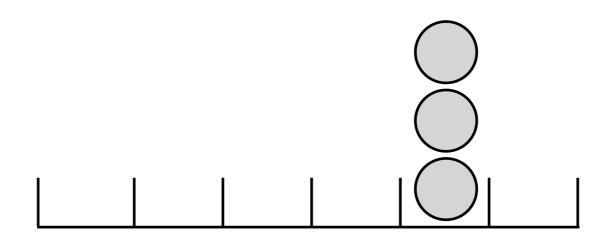
Comparison of linear optics

Quantum computing with qudits	Linear optics with photons		
States: $ \psi angle \in (\mathbb{C}^m)^{\otimes n}$	States: $ \psi\rangle\in(\mathbb{C}^m)^{\odot n}$		
	symmetric tensor product $v_1 \odot \ldots \odot v_n = \frac{1}{n!} \sum_{\sigma \in S_n} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}$		
Operations: $U \in \mathrm{U}(m^n)$	Operations: $L^{\otimes n}$ for $L \in \mathrm{U}(m)$		

Linear Optics - States

States: n photons and m modes

photons ~ indistinguishable balls modes ~ distinct bins/locations



Notation: Let $|s_1, s_2, \dots, s_m\rangle$ be the state with s_1 photons in the first mode, s_2 in the second, and so on.

For example: $\frac{|1, 1, 1, 0, 0, 0\rangle + |0, 2, 0, 0, 1, 0\rangle}{\sqrt{2}}$

Linear Optics - Transformations

Idea: Linear optical transformation is specified by its action on a single photon. Apply homomorphism to lift to entire Hilbert space for multiple photons.

 \mathcal{C} -transition formula: Given $m \times m$ unitary L, the amplitude from state $|S\rangle = |s_1, s_2, \dots, s_m\rangle$ to state $|T\rangle = |t_1, t_2, \dots, t_m\rangle$ is

$$\langle T | \varphi(L) | S \rangle = \frac{\operatorname{per}(L_{S,T})}{\sqrt{s_1! s_2! \dots s_m! t_1! t_2! \dots t_m!}}$$

where $L_{S,T}$ is the matrix obtained by taking

- s_i copies of row i from L
- t_i copies of column i from L

Example:

$$L = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{vmatrix} |S\rangle = |1, 1\rangle \\ |T\rangle = |2, 0\rangle \qquad L_{S,T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \langle 2, 0 | \varphi(L) | 1, 1\rangle = \frac{1}{\sqrt{2}}$$

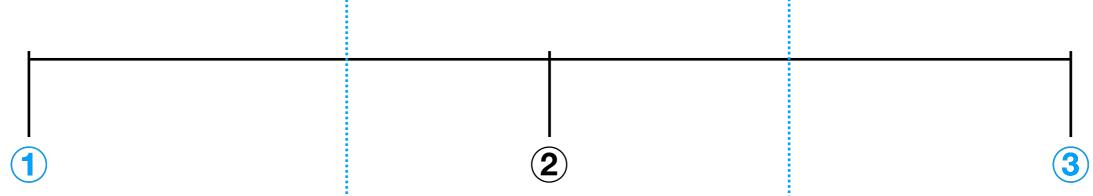
Observation: If $|S\rangle = |T\rangle = |1, \dots, 1\rangle$, then $\langle T | \varphi(L) | S \rangle = \operatorname{per}(L)$.

Outline of #P-hardness proof

Input: Given polynomially sized circuit $C: \{0,1\}^n \to \{0,1\}$

Output: Number of satisfying assignments minus unsatisfying assignments to C

$$\Delta_C := \sum_{x \in \{0,1\}^n} (-1)^{C(x)}$$



Encode Δ_C into the transition amplitude of a quantum circuit Q over qubits

Convert ${\cal Q}$ into a linear optical network ${\cal L}$

Use correspondence between linear optics and permanents

Postselected linear optics is quantum universal

Theorem [Knill, Laflamme, Milburn (2001)]:

Postselected linear optical circuits are universal for quantum computation.

Formally, given quantum circuit Q with polynomially many CSIGN and singlequbit gates, there exists linear optical circuit L with polynomially many modes such that

$$\langle I | \varphi(L) | I \rangle = \frac{1}{4^{\Gamma}} \langle 0 \cdots 0 | Q | 0 \cdots 0 \rangle$$

where,

$$|I\rangle = |0, 1, 0, 1, \dots, 0, 1\rangle$$

 Γ = number of CSIGN gates in Q

Note: CSIGN + single-qubits gates are universal for quantum computation

CSIGN
$$|x_1x_2\rangle = (-1)^{x_1x_2} |x_1x_2\rangle$$

Theorem [Aaronson (2011)]:

[Aaronson (2011)]:
$$\frac{\Delta_C}{2^n} = \langle 0 \dots 0 | \, Q \, | 0 \dots 0 \rangle = 4^\Gamma \, \langle I | \, \varphi(L) \, | I \rangle = 4^\Gamma \mathrm{per}(L_{I,I})$$

KLM protocol - representing states

Theorem [Knill, Laflamme, Milburn (2001)]:

Given quantum circuit Q with polynomially many CSIGN and single-qubit gates, there exists linear optical circuit L with polynomially many modes such that

$$\langle I | \varphi(L) | I \rangle = \frac{1}{4^{\Gamma}} \langle 0 \cdots 0 | Q | 0 \cdots 0 \rangle$$

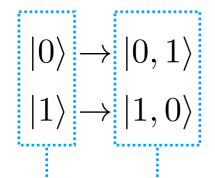
where $|I\rangle=|0,1,0,1,\dots,0,1\rangle$

Representing qubits with linear optical states:

Problem: qubit is either in state $|0\rangle$ or $|1\rangle$, but number of photons is conserved

Solution: use two modes and one photon to encode a single qubit

Dual rail encoding



→ This is the source of non-unitarity in Aaronson's proof

qubits linear optical state

Add new encoding phase to KLM

Goal: Construct linear optical circuit L from Q such that

$$\langle 1, 1, \dots, 1 | \varphi(L) | 1, 1, \dots, 1 \rangle \propto \langle 0 \cdots 0 | Q | 0 \cdots 0 \rangle$$

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

Add new encoding phase to KLM

Goal: Construct linear optical circuit L from Q such that

$$\langle 1, 1, \dots, 1 | \varphi(L) | 1, 1, \dots, 1 \rangle \propto \langle 0 \cdots 0 | Q | 0 \cdots 0 \rangle$$

Problem: KLM uses dual rail encoding.

Solution: Prepare the dual rail encoding using another gadget.

KLM solution: 1 qubit represented by 1 photon and 2 modes

Our solution: 1 qubit represented by 4 photons and 4 modes

Encoding gadget
$$\longrightarrow$$
 $|1,1,1,1\rangle$ Decoding gadget \longrightarrow $|0,1,2,1\rangle$ $|1,1,1,1\rangle$

Putting it all together

Theorem:

$$\frac{\Delta_C}{2^n} = \langle 0 \dots 0 | Q | 0 \dots 0 \rangle$$

$$= (-\sqrt{6})^n \left(3\sqrt{\frac{3}{2}} \right)^{\Gamma} \langle 1, \dots, 1 | \varphi(L) | 1, \dots, 1 \rangle$$

$$= (-\sqrt{6})^n \left(3\sqrt{\frac{3}{2}} \right)^{\Gamma} \operatorname{per}(L)$$

unitary (!!

How do you find gadgets?

- 1. Guess transformation
- 2. Use constraint solver

$$E = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & -\sqrt{2} & \sqrt{2} \\ 0 & \sqrt{3} & \sqrt{3} \\ -2 & -1 & 1 \end{pmatrix}$$

Permanent hardness over finite fields

Theorem: Permanent is #P-hard for unitary matrices.

Theorem: Let $p \neq 2, 3$ be prime. There exists a finite field of characteristic p, namely \mathbb{F}_{p^4} , such that the permanent of an orthogonal matrix in \mathbb{F}_{p^4} is $\mathsf{Mod}_p\mathsf{P}$ hard.

Proof: Inspect gadgets carefully

$$E = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & -\sqrt{2} & \sqrt{2} \\ 0 & \sqrt{3} & \sqrt{3} \\ -2 & -1 & 1 \end{pmatrix} \qquad \alpha = \sqrt{2 + \sqrt{2} + \sqrt{3} + \sqrt{6}}$$

All entries in $\mathbb{Q}(\alpha)$

$$\alpha = \sqrt{2 + \sqrt{2} + \sqrt{3 + \sqrt{6}}}$$

$$V = \frac{1}{3\sqrt{2}} \begin{pmatrix} -\sqrt{2} & -2 & 2 & 2\sqrt{2} \\ 2 & -\sqrt{2} & -2\sqrt{2} & 2 \\ -\sqrt{6+2\sqrt{6}} & \sqrt{6-2\sqrt{6}} & -\sqrt{3+\sqrt{6}} & \sqrt{3-\sqrt{6}} \\ -\sqrt{6-2\sqrt{6}} & -\sqrt{6+2\sqrt{6}} & -\sqrt{3}-\sqrt{6} & -\sqrt{3+\sqrt{6}} \end{pmatrix}$$

Summarizing matrix permanent complexity

	$\mathbb{C}^{n imes n}$	SO(n)	$\left\{0,1\right\}^{n\times n}$	$x^T A x \ge 0$
exact	# P-hard [Valiant 79]	# P-hard [GS 2017]	# P-hard [Valiant 79]	# P-hard [GS 2017]
approximate	# P-hard [Valiant 79]	# P-hard [GS 2017]	FPTAS [JSV 2004]	???

Open Problems:

- Is there a polynomial-time approximation algorithm for permanents of positive-semidefinite matrices?
 - best known: polynomial time 4.84^n -approximation [AGGS 2017]
- Are orthogonal permanents over \mathbb{F}_p hard for $\mathrm{Mod}_p\mathsf{P}$ for all $p\neq 2,3$?
- Are there more insights about the permanent to be gained through this linear optical lens?
 - [CCG 2016]: under restricted conditions on the eigenvalues, can outperform Gurvits's *additive* approximation algorithm