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Preamble

These lecture notes derive from a sequence of scribe notes taken from the Fall 2022 iteration
of CSE 291 / Math 277A (Quantum Complexity Theory). This document represents a contin-
ual and iterative process to bring those notes into a more cohesive whole. Any mistakes can
be assumed to have been introduced by me. Please feel free to email me (dgrier@ucsd.edu)
if you notice any.

These course notes are written for graduate students with a strong mathematical back-
ground, but not necessarily any previous experience with quantum computing. Some pre-
vious exposure to complexity theory will be extremely useful. I recommend the excellent
Arora-Barak textbook for those looking to brush up on that background.

Overview

The goal of these notes is to rigorously compare, using the tools of complexity theory, the
power of quantum and classical computers. We will see some settings in which quantum
computers outperform their classical counterparts and some settings in which quantum com-
puters are no better than brute force classical approaches. Given the recent explosion of
progress in actually building a quantum computer, it is becoming more important than ever
that we understand the difference in the quantum and classical worlds and what they al-
low us to compute. The exploration in these notes will take us to the forefront of quantum
computing research, where we’ll look at the complexity-theoretic foundations of these recent
experiments.

https://danielgrier.com/courses/CSE291/Fa22/
http://theory.cs.princeton.edu/complexity/book.pdf


Chapter 1

Foundations of Quantum Mechanics

Before we can reason about the power of quantum computers, we must obviously first under-
stand what kinds of computations they unlock. We will start with the pure foundations: What
is a quantum state, and what kinds of operations can you perform on that state?

From there, we will define a computational model (analogous to the classical Turing ma-
chine) that captures the essence of a quantum computer.

1.1 The basics of quantum computation

What is the state of a quantum system? Let’s start by analogy to one of the simplest classi-
cal objects—a biased coin. Since it will be convenient later, let’s suppose the coin has two
sides, corresponding to a 0-outcome and a 1-outcome (perhaps more traditionally these two
outcomes would be called “heads” and “tails”).

To be even more concrete, let’s suppose the coin is biased so that it lands on the 0-outcome
with 30% probability and on the 1-outcome with 70% probability. Suppose we flip the coin
in the air, and we want to describe the probability distribution over outcomes when the coin
lands. We could represent it by the length-2 vector:

(
0.3
0.7

)
← Probability of 0-outcome
← Probability of 1-outcome

In some sense, this represents the “state” of the coin if we know the coin has landed on one
side or the other, but we have not yet looked at which outcome.

If we were to look at the outcome, then the state of the system immediately changes to
whichever outcome we saw:

(
1
0

)
← 0-outcome

with certainty or
(
0
1

)
← 1-outcome

with certainty

since there is no ambiguity in the outcome once we’ve observed it.
Stepping back a bit, let’s look at the full description of states and operations in this classical

probability framework. First, notice that instead of a coin with just 2 outcomes, we could have
as many outcomes as we like (think of a biased die); but for simplicity, let’s assume there are
only finitely many. In a system with d outcomes, the state of the system would be described
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CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 5

by a vector of d probabilities. The key property of this vector is that each probability is non-
negative and all probabilities sum up to 1.

The set of operations that we could perform on this system are the set of operations that
take probability vectors to probability vectors. Specifically (and we will see how this changes
in the quantum setting soon), these operations preserve the ℓ1-norm of the vector, where the
ℓ1-norm of vector v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥1 :=
d∑

i=1

|vi|

Qubits

Let’s now complete the analogy of the classical probabilistic bit discussed above with the
quantum variant called a qubit. Instead of assigning two outcomes (0 and 1) a probability, we
instead assign them a complex number called an amplitude. We represent a qubit as a column
vector in C2. For example,

(
1√
2
i√
2

)
← Amplitude on 0-outcome
← Amplitude on 1-outcome

Let’s now discuss what it means to “look” at a quantum state, which is called measurement in
the quantum setting. The measurement axiom of quantum mechanics, called the Born rule,
says that you see a particular outcome with the squared magnitude of the amplitude. For
the example above, this means we’d see the 0-outcome with probability |1/

√
2|2 = 1/2 and

the outcome will be 1 with probability |i/
√
2|2 = 1/2. Once again, when you observe this

outcome the qubit collapses to whichever outcome you observed.
From the Born rule, we can derive a condition on the amplitudes of a qubit. Suppose

we have a qubit with amplitudes α, β ∈ C. The Born rule states that we see the outcome
with probability |α|2 and |β|2, respectively. Since there are only two outcomes, these two
probabilities must sum up to 1 (i.e., we must see either theO or 1 outcome when we measure).
We arrive at the following condition for the amplitudes of a qubit: |α|2 + |β|2 = 1.

Stepping back again, let’s give a complete mathematical description of a quantum state.
We can generalize to quantum state with d outcomes (called a qudit for d > 2), which is
represented by a length-d complex vector. The key property of this vector is that the squared
magnitudes of the amplitudes sum to 1. In other words, the ℓ2-norm of the vector is 1. The
ℓ2-norm of any v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥2 :=

√√√√
d∑

i=1

|vi|2.

It is an amazing fact that moving from the classical to the quantum setting is in some sense
just moving from the ℓ1 to the ℓ2 norm.

Unitary matrices

Because the set of valid quantum states must have unit ℓ2-norm, the set of viable quantum
operations must preserve the ℓ2-norm of the state. However, not all such operations are valid.
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An axiom of quantum mechanics dictates that quantum operations must also be linear. We
will see a slight generalization of this later, but for now, you can think of this linearity as
implying that quantum operations are matrices. Applying a quantum operation to a quan-
tum state simply means multiplying the vector of the state with the matrix of the quantum
operation.

Matrices preserving the ℓ2-norm have a beautiful characterization—namely, they are the
unitary matrices, i.e., matrices U ∈ Cd×d such that UU † = I. Here, “†” is the conjugate
transpose operation and “I” is the identity matrix.

1.2 Multi-qubit quantum computation

In general, we think of large classical computations as a sequence of operations on some
bit string. In this way we can break up some large complex operation into a sequence of
simpler operations. The number of operations required to build the more complex operation
is a proxy for how complex that operation really is. Similarly, in quantum systems, we want
to build up larger more complex operations from simpler ones. To do this, we first need to
understand what a quantum systems consisting of multiple qubits, so that we can understand
what it means to locally apply some quantum operation.

Tensor product of states

Once again, let’s start with a discussion of multiple classical random bits, and see how it
generalizes to qubits. Let A,B be two random bits. Each bit has some probability of being
in the 0 or 1 outcome. Together, the two bits give rise to a probability distribution over pairs
of outcomes (i.e., 00, 01, 10, and 11). We can derive the probability of a particular pair of
outcomes by multiplying the probabilities of the individual outcome for each bit. For example,
let

A =

(
0.3
0.7

)
← 0
← 1

, B =

(
0.6
0.4

)
← 0
← 1

Then the product distribution associated to A and B together gives rise to the vector

AB =




0.18
0.12
0.42
0.28




← 00
← 01
← 10
← 11

Combining two separate qubits into a single system is exactly the same. Let v, w ∈ C2 be
vectors representing two qubits. The vector of the joint system is called the tensor product
v ⊗ w of the two vectors v and w. The tensor product operation yields the vector containing
all products of amplitudes. The example looks identical to the classical setting:

v =

(√
0.3√
0.7

)
← 0
← 1

, w =

(√
0.6√
0.4

)
← 0
← 1
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and

v ⊗ w =




√
0.18√
0.12√
0.42√
0.28




← 00
← 01
← 10
← 11

Formally, the tensor product operation⊗ is defined over any pair of vectors v ∈ Ca and w ∈ Cb
(not necessarily of the same length) as

v ⊗ w :=



v1w

...
vaw


 =




v1w1
...

v1wd
v2w1

...
vawb




From this definition, one can derive the following properties of the tensor product, which
hold for all complex vectors v, w, z and scalars α, β ∈ C:

Scalar multiplication: (αv)⊗ (βw) = (αβ)(v ⊗ w)
Associativity: (v ⊗ w)⊗ z = v ⊗ (w ⊗ z)
Distributivity: v ⊗ (w + z) = v ⊗ w + v ⊗ z

We have that the tensor product of two qubits is represented by a length-4 complex vector,
the tensor product of three qubits is represented by a length-8 vector, and so on. One of the
key questions we will ask in these notes is: how much of this exponentially is really there?
Of course, when it comes to quantum states constructed from tensor products of qubits, the
answer is... not much. To describe such a state, we simply need the 2 amplitudes for each
individual qubit, a total of 2n amplitudes for an n-qubit state, rather than the 2n amplitudes
in the tensor product vector.

Critically, however, not all quantum states over qubits can be described in this way. That is,
we can start with tensor product of single-qubit quantum states, apply a sequence of quantum
operations, and arrive at a state which cannot be described by any tensor product of single-
qubit states. Such states are called entangled.

Our first example of an entangled 2-qubit state is the following:



1/
√
2

0
0

1/
√
2




which is known (amongst other names) as the Bell state. Before we prove this state is en-
tangled, let’s take a moment to consider what would happen if we measured this state. We
would see the 00 outcomes with probability 1/2 and the 11 outcome with probability 1/2. In
other words, if we made the measurement and we saw that the first qubit was 0, we would
immediately know the second qubit was also 0. This description gets even stranger when



CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 8

we consider the possibility that we could dramatically separate the first and second qubits,
putting each on either end of the galaxy (hard to do in practice, of course!). Measuring at
one end of the galaxy immediately tells us outcome of the qubit at the other end.1

To prove the Bell state is entangled, we argue by contradiction. Suppose otherwise, then
we would have 



1/
√
2

0
0

1/
√
2


 =

(
α0

α1

)
⊗
(
β0
β1

)
=




α0β0
α0β1
α1β0
α1β1




for some complex amplitudes α0, α1, β0, β1. Comparing the left and right equations, we get
the constraints:

1√
2
= α0β0, 0 = α0β1, 0 = α1β0,

1√
2
= α1β1.

One can check this system of equations has no feasible solution, and therefore, the Bell state
must entangled.

Tensor product of matrices

The tensor product of matrices is the unique operator which respects the tensor product of
the underlying states. That is, for unitaries U ∈ Ca and V ∈ Cb, the tensor product unitary
U ⊗ V is the unique linear operator such that

(U ⊗ V )(v ⊗ w) = (Uv)⊗ (V w)

for all states v ∈ Ca and w ∈ Cb. This definition lines up with our intuition that if we apply a
unitary to a specific qubit, then it should not affect any other qubit.

Formally, one can give a (rather more cumbersome) definition of the tensor product of
arbitrary matrices U ∈ Ca and V ∈ Cb as:

U ⊗ V =




u11V u12V · · · u1aV
u21V u22V · · · u2aV

...
...

. . .
...

ua1V ua2V · · · uaaV


 .

Written out somewhat more explicitly when a = b = 2, we have

U ⊗ V =



u11

(
v11 v12
v21 v22

)
u12

(
v11 v12
v21 v22

)

u21

(
v11 v12
v21 v22

)
u22

(
v11 v12
v21 v22

)


 =




u11v11 u11v12 u12v11 u12v12
u11v21 u11v22 u12v21 u12v22
u21v11 u21v12 u22v11 u22v12
u21v21 u21v22 u22v21 u22v22


 .

1A significant amount of ink has been spilled on exactly what is happening at a physical layer when a measure-
ment like this is made. Look up the ”quantum measurement problem”. Thankfully for one of the most cherished
pysical laws, this entanglement phenomenon does not allow for faster than light communication.
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Partial measurement

With the tensor product, we can now talk about unitary matrices applied to a subset of qubits
in our computation. As it turns out, it is also makes sense to measure a subset of qubits.
Once again, we can appeal to our classical intuition. Suppose we have the following classical
distribution over outcomes: 



0.3
0.1
0.3
0.3




← 00
← 01
← 10
← 11

Suppose we look at the second coin, but not the first. The probability the see the 0-outcome
for the second coin is

Pr[00-outcome] + Pr[10-outcome] = .3 + .3 = .6

since both of those outcomes are consistent with seeing 0 for the second coin. By an identical
calculation, we see the 1-outcome for the second coin with 40% probability.

Let’s suppose we do see the second coin in the 0-outcome. Now we must calculate the
distribution on the first coin conditioned on seeing the second coin in the 0-outcome. For
either outcome b ∈ {0, 1}, we have

Pr[b for first coin | 0 for second coin] =
Pr[(b for first coin) ∧ (0 for second coin)]

Pr[0 for second coin]
.

In our example, the probability we see the 0-outcome on the first coin conditioned on having
seen 0 for the second outcome is just .3/.6 = .5. In practice, its often easiest to do these calcu-
lations by simply removing the outcomes that are inconsistent with the partial measurement,
and then renormalizing the vector. For our example where we’ve seen the 0-outcome on the
second coin, we have




0.3
0.1
0.3
0.3




Remove inconsistent
outcomes−−−−−−−−−−−−→




0.3
0
0.3
0




Renormalize−−−−−−−→




0.5
0
0.5
0


 .

Once again, the quantum setting is identical except everything is done with respect to the
ℓ2-norm rather than the ℓ1-norm. For completeness, let’s look at a similar example with a
quantum state: 



√
0.3√
0.1√
0.3√
0.3




← 00
← 01
← 10
← 11

The probability we see the 0-outcome for second qubit is |
√
.3|2 + |

√
.3|2 = .6, and the distri-

bution on the first qubit conditioned on this outcome is



√
0.3√
0.1√
0.3√
0.3




Remove inconsistent
outcomes−−−−−−−−−−−−→




√
0.3
0√
0.3
0




Renormalize−−−−−−−→




√
0.5
0√
0.5
0


 .
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This procedure will be easier to describe more formally once we’ve introduced the notation
in the following section.

1.3 Dirac notation and inner products

Let’s start this section by introducing a method for writing quantum states, called Dirac no-
tation. While this notation may at first seem somewhat unnecessary, it turns out to be quite
natural. The most basic notational idea is that we will use a “ket”, which looks like |·⟩, to
describe a vector that is supposed to be a quantum state (i.e., a unit vector with respect to the
ℓ2-norm). Importantly, we reserve certain vectors special states. In particular, the 0-outcome
and 1-outcome states, which we have previously been referring to somewhat awkwardly, are
now associated with the following vectors:

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

So, for example, we can write an arbitrary single-qubit quantum state |ψ⟩ as

|ψ⟩ = α |0⟩+ β |1⟩

for amplitudes α, β ∈ C. To write multi-qubit states in this notation, we employ another
useful shorthand for bit strings x ∈ {0, 1}n:

|x⟩ := |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩

We call such states the classical basis states. Now, any n-qubit state |ψ⟩ can be written as linear
combination of the classical basis states:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where αx ∈ C is some complex amplitude for each x ∈ {0, 1}n. For example, we can write
the Bell state introduced in the previous section as

|00⟩+ |11⟩√
2

.

Inner products

Every quantum state lives in a vector space Cd. We will often use that this vector space
is actually a Hilbert space, meaning that it is equipped with an inner product: for vectors
v, w ∈ Cd, their inner product is defined as

v†w =

d∑

i=1

viwi.

In Dirac notation, we write ⟨ψ| (pronounced “bra”-ψ) to denote the conjugate transpose of
the state |ψ⟩. Therefore, the inner product between two state |ψ⟩ and |φ⟩ is written as

⟨ψ|φ⟩ :=
bra
↓
⟨ψ| ·

ket
↓
|φ⟩
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where the lefthand side shows yet another shorthand. Now we can finally see the reason for
the weird names “bra” and “ket”. When you put them together to form an inner product, you
get the phrase “braket”, which looks like “bracket” if you squint.

Why go through all this trouble to create a shorthand for inner products? Perhaps most
importantly, the inner product induces a natural distance measure on quantum states. If the
inner product of two states is 1, then the states are identical. If the inner product is 0, then
the states are perfectly distinguishable.

Outer products

We can also use Dirac notation to denote the outer product between states in the natural way.
For states |ψ⟩ , |φ⟩ ∈ Cd, their outer product is

|ψ⟩⟨φ| :=




ψ1

ψ2
...
ψd



(
φ1 φ2 · · · φd

)
=




ψ1φ1 ψ1φ2 · · · ψ1φd
ψ2φ1 ψ2φ2 · · · ψ2φd

...
...

. . .
...

ψdφ1 ψdφ2 · · · ψdφd




The outer product is useful for describing quantum operations. For example, an arbitrary
n-qubit unitary U can be written as

U =
∑

x,y∈{0,1}n
ux,y |x⟩⟨y|

where ux,y = ⟨x|U |y⟩ ∈ C is the amplitude the unitary places on the state |x⟩ on input |y⟩. In
this case, |x⟩⟨y| is just matrix which is 1 at entry (x, y) and 0 everywhere else.

Summary – Quantum computation over n qubits

States: |ψ⟩ ∈ C2n such that
∑

x∈{0,1}n |⟨x|ψ⟩|2 = 1

Operations: U ∈ C2n×2n such that U †U = U †U = I
Applying U to |ψ⟩ results in the state U |ψ⟩

Measurement: State collapses to |x⟩ with probability |⟨x|ψ⟩|2

1.4 Mixed states

For many questions in quantum computation, the formalism of states and operations we’ve
previously developed is sufficient. For example, most quantum algorithms start with some
classical basis state, apply some unitary operation, and then measure. However, there is
actually a more general form of a quantum state that is useful in a variety of contexts, like
when you have noise in your quantum computer.

The quantum states |ψ⟩ we have defined previously are called pure states. What makes a
state “impure”, or as it’s traditionally called “mixed”? We say that a state is mixed when it
represents a probability distrubtion of pure states. To see why these two notions are different,
it’s helpful to look at an example.
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On the one hand, let’s take the pure state |+⟩ := |0⟩+|1⟩√
2

which in some sense equal parts
|0⟩ and |1⟩. On the other hand, let’s take the mixed state which is either |0⟩ or |1⟩ with 50%
probability. These states may superficially seem to be the same (after all, they have the same
probability over outcomes when measured), but are actually quite different. To see this, let’s
examine what happens when we apply the following unitary H, which is called the Hadamard
gate:

H =
1√
2

(
1 1
1 −1

)
.

Applying H to our pure state |+⟩, we get

H |+⟩ = 1

2

(
1 1
1 −1

)(
1
1

)
=

(
1
0

)
= |0⟩

In other words, if we were to measure our pure state after the application of the unitary
operation H, then we are guaranteed to see the outcome |0⟩. This will not be true in our
mixed state picture. Let’s do the calculation. Applying H to the mixed state, we get

H |0⟩ = 1

2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩

and

H |1⟩ = 1

2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=: |−⟩ ,

each of which happens with 50% probability. What is the probability we measure |0⟩ now?
Given the calculation above of what the Hadamard transformation does to each of our starting
states, we have

Pr[measure |0⟩] =Pr[Original state was |0⟩] · Pr[measure |0⟩ on state |+⟩]
+ Pr[Original state was |1⟩] · Pr[measure |0⟩ on state |−⟩]

=
1

2
· 1
2
+

1

2
· 1
2
=

1

2

We can now see that when our state was a statistical mixture of |0⟩ and |1⟩, the Hadamard
transformation didn’t change our measurement probabilities at all. In fact, this is a general
phenomenon. One can show that no matter what unitary transformation you apply to this
mixed state, you will always get |0⟩ and |1⟩ with 50% probability. This will be easy to show
using the formalism we now introduce.

Density matrices

General quantum systems are fully described by statistical mixtures of quantum states—that
is, an ensemble of pure states {|ψi⟩}i each of which is prepared with probability pi ∈ [0, 1].
The density matrix corresponding to this ensemble is

ρ =
∑

i

pi |ψi⟩⟨ψi| ∈ C2n×2n
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where
∑

i pi = 1. One can show that if you have a density matrix ρ and apply a unitary U ,
that the new density matrix is given by UρU †. Furthermore, measurement results in outcome
|x⟩ with probability ⟨x| ρ |x⟩, whereupon ρ collapses to the state |x⟩⟨x|.

Let’s revisit our example of an even statistical mixture of the states |0⟩ and |1⟩. The
corresponding density matrix is

1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

1

2

(
1 0
0 1

)
=
I

2
.

As it turns out this stated is called the maximally mixed state since it represents that we
essentially have no knowledge of what the underlying state is. To see this, imagine applying
any unitary U to this state. We would get

U

(
I

2

)
U † =

UU †

2
=
I

2
,

as the new state, which is the same state we started with. In other words, no unitary operation
changes how the state looks. This proves the claim we made earlier that any unitary followed
by measurement would result in outcomes |0⟩ and |1⟩ with equal probability.

What matrices correspond to ensembles of pure states? As it turns out, there is a very nice
characterization: ρ is a valid density matrix if and only if ρ is a trace-1 positive semidefinite
matrix. Trace-1 implies that Tr(ρ) = 1. Positive semidefinite implies that ⟨ψ| ρ |ψ⟩ ≥ 0 for all
pure states |ψ⟩.

The forward direction of this claim can be shown by reasoning directly about the types
of matrices that an ensemble of states can give rise to. The reverse direction can be shown
by taking the spectral decomposition of ρ, which is valid since we have assumed that ρ is
positive semidefinite. The eigenvectors of this decomposition will be the pure states in the
decomposition, and the eigenvalues will be the associated probabilities.

Quantum channels

As one might have now guessed, unitary transformations are also not the most general trans-
formation on quantum states. Quantum transformations that work on the level of density
matrices are called quantum channels. That said, it is not true that every channel which
preserves density matrices corresponds to a valid quantum operation. Most importantly, as
required by the axioms of quantum mechanics, the channel must be linear. Furthermore, for
technical reasons having to do with applying the channel to a restricted set of qubits, we
must also require that the quantum channel still maps density matrices to density matrices
when it is tensored with the identity map. Maps satisfying all the above conditions are called
completely positive trace preserving (CPTP).

Measurement

While there is a more general form of quantum measurements, it turns out that these more
general measurements can be simulated by the measurements that we have already intro-
duced. So, for simplicity, we will always assume that we measure our qubits the usual way.
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Summary – Quantum computation with n-qubit mixed states

States: ρ ∈ C2n×2n such that Tr(ρ) = 1 and ρ is positive semidefinite

Operations: Completely positive trace-preserving maps Φ
If Φ is a unitary channel, then Φ(ρ) = UρU † for unitary U ∈ C2n×2n

Measurement: State collapses to |x⟩⟨x| with probability ⟨x| ρ |x⟩

Partial Trace

One of the most important reasons to introduce the density matrix formalism is to be able
to talk about parts of a quantum state in isolation. That is, even if we have an n-qubit pure
state, it is not necessarily the case that the state restricted to, say, the first n/2 qubits is a pure
state.

We now introduce a way to “trace out” part of a density matrix of a large system to
describe the state on the leftover qubits. To start, let’s imagine we start with a composite
system HA ⊗HB. For simplicitly, you can at first just assume that HA and HB are the Hilbert
spaces for two different qubits. Formally, the partial trace TrB is the unique linear map
satisfying

TrB(|ai⟩ ⟨aj |)⊗ |bi⟩ ⟨bj |) = |ai⟩ ⟨aj |Tr(|bi⟩ ⟨bj |) ,
where ai, aj ∈ HA and bi, bj ∈ HB are basis elements for the two subsystems.

So, if we have some state ρAB that lives in the Hilbert space HA ⊗ HB, then the density
matrix for the subsystem A after ignoring the subsystem B is given by

ρA = TrB (ρAB) .

If we apply the partial trace operator to a product state we get, unsurprisingly,

TrB (ρA ⊗ ρB) = ρA.

What happens when we take the partial trace of the Bell state? The density matrix is given by

ρBell :=

( |00⟩+ |11⟩√
2

)(⟨00|+ ⟨11|√
2

)
=
|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|

2

so tracing out the second qubit, we get (by linearity of the partial trace)

Tr2(ρBell) =
1

2
(Tr2(|00⟩⟨00|) + Tr2(|00⟩⟨11|) + Tr2(|11⟩⟨00|) + Tr2(|11⟩⟨11|))

=
1

2
(|0⟩⟨0|Tr(|0⟩⟨0|) + |0⟩⟨1|Tr(|0⟩⟨1|) + |1⟩⟨0|Tr(|1⟩⟨0|) + |1⟩⟨1|Tr(|1⟩⟨1|))

=
1

2
(|0⟩⟨0| · 1 + |0⟩⟨1| · 0 + |1⟩⟨0| · 0 + |1⟩⟨1| · 1)

=
|0⟩⟨0|+ |1⟩⟨1|

2
.

That is, if we take the Bell state and trace out a qubit, we are left with the maximally mixed
state. This may give you some sense of the fragility of quantum computations. If you take an
entangled state and lose a single qubit, it may become completely useless.
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Reconciling the pure and mixed states

Often it will be easier to reason about pure states rather than mixed ones. As we’ve seen
before, this is in some sense fundamentally impossible—there are mixed states which behave
completely differently from pure ones. That said, there is also some sense in which there is
an equivalence between the two settings. Namely, for every n-qubit mixed state ρ, there is
a (2n)-qubit pure state such that tracing out the last n qubits of |ψ⟩ leaves the state ρ. This
process is called purification.

We will give an explicit purification procedure. First, let ρ be an arbitrary n-qubit mixed
state:

ρ =
∑

x∈{0,1}n
px |ψx⟩⟨ψx|

The following state will be a purification of ρ:

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ |x⟩

Let B be the system consisting of the last n qubits. Tracing out B, we get the density matrix:

TrB (|ψ⟩⟨ψ|) = TrB

(∑
x,y
√
pxpy |ψx⟩⟨ψy| ⊗ |x⟩⟨y|

)

=
∑

x,y
√
pxpy TrB(|ψx⟩⟨ψy| ⊗ |x⟩⟨y|) (Linearity of partial trace)

=
∑

x,y
√
pxpy |ψx⟩⟨ψj |Tr (|x⟩⟨y|) (Definition of partial trace)

=
∑

x px |ψx⟩⟨ψx| (Trace is 1 iff x = y)

which is precisely the mixed state ρ that we wanted to embed into |ψ⟩.
Are purifications unique? Unfortunately, not. To see this, notice that we can generalize

our purification procedure above my multiplying the second register by any n-qubit unitary
U :

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ (U |x⟩).

Intuitively, it makes sense that changing the basis of the second register shouldn’t affect partial
trace since we never used anything special about the classical basis states. Formally, you can
check that the computation is agnostic to the choice of unitary U because of the following
equalities:

Tr(U |x⟩⟨y|U †) = Tr(U †U |x⟩⟨y|) = Tr(|x⟩⟨y|)
where the first equality uses the cyclic property of the trace and the second using the fact that
U is unitary.

1.5 Noteworthy quantum phenomena

Let’s start to use the quantum formalism to take note of some interesting phenomena. We
start with a classic result which implies that quantum information cannot be copied.
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Theorem 1.1 (No-Cloning Theorem). There is no (2n)-qubit unitary U and n-qubit state |φ⟩
such that

U(|ψ⟩ ⊗ |φ⟩) = |ψ⟩ ⊗ |ψ⟩
for all pure states |ψ⟩.

Proof. We argue by constradiction. Suppose such at U and |φ⟩ existed, and let |ψ1⟩ , |ψ2⟩ be
two states we want to copy. In other words, we have

U(|ψi⟩ ⊗ |φ⟩) = |ψi⟩ ⊗ |ψi⟩

for i ∈ {1, 2}. Let’s now take the inner product of the two states U(|ψ1⟩⊗|φ⟩) and U(|ψ2⟩⊗|φ⟩)

(|ψ1⟩ ⊗ |φ⟩)U †U(|ψ2⟩ ⊗ |φ⟩) = ⟨ψ1|ψ2⟩ ⟨φ|φ⟩ = ⟨ψ1|ψ2⟩

and compare it to the inner product of |ψ1⟩ ⊗ |ψ1⟩ and |ψ2⟩ ⊗ |ψ2⟩:

(⟨ψ1| ⊗ ⟨ψ1|)(|ψ2⟩ ⊗ |ψ2⟩) = ⟨ψ1|ψ2⟩2 .

Cloning implies that these two expressions are equal:

⟨ψ1|ψ2⟩ = ⟨ψ1|ψ2⟩2 .

However, for any states such that ⟨ψ1|ψ2⟩ ̸∈ {0, 1}, the above equation will not hold. That is,
cloning breaks for any distinct pair of non-orthogonal states!



Chapter 2

Computation with Quantum Circuits

2.1 The quantum circuit model

How do we describe a quantum algorithm? One might think that something like a general-
ization of the classical Turing machine may be a particularly apt choice, given the centrality
of that model to the story of classical theory of computation. While it is possible to define a
quantum Turing machine, it turns out to be rather cumbersome to work with.

Instead, we will use a model of computation that more-or-less is the straightforward real-
ization of applying a sequence of unitaries—the quantum circuit.

Introduction to quantum circuits

A n-qubit quantum circuit is a collection of unitary operations G1, . . . , Gm, called gates, ap-
plied in sequence to a subset of n wires. The composition of the gates in the circuit generates
a 2n × 2n unitary operation. We assume that each gate is in tensor product with the identity
operation on each wire that it does not touch. Let’s look at a simple example:

G1

G3

G2

time−−−−−−−−−−−−→
The above diagram is a circut on 3 qubits with 3 gates: the single-qubit gate G1 is applied
first; the 2-qubit gate G2 is applied next; and finally G3 is applied as a 3-qubit gate. The
unitary matrix representing this circuit is

G3 (I ⊗G2) (G1 ⊗ I ⊗ I) .
Beware: matrix multiplication happens the reverse order of the circuit, which is why G1

appears last the composition of unitaries. Since G1 and G2 act on different wires, we get that

(I ⊗G2) (G1 ⊗ I ⊗ I) = G1 ⊗G2.

17
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Therefore, in the diagram, we can put G1 and G2 on the same layer.

G1

G3

G2

That is, a layer of the circuits consists of a set of gates that can be applied simultaneously
since they act on different qubits. The depth of a circuit is the number of layers of gates it has.
Therefore, the example circuit above has depth 2.

Examples with common gates

Let’s take a look at some of the most common gates used in quantum circuits and the special
notation that we use to denote them.

Classical reversible gates

One of the most common two-qubit gates is the controlled-NOT or CNOT gate. Recall that by
linearity, it suffices to define the action of any gate on the computational basis. CNOT has the
following action:

|00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩ .

Notice that CNOT maps any computational basis state to another computational basis state.
That is, the CNOT gate is “classical” in the sense that it cannot be used to create superposition
of inputs. A CNOT gate in a circuit is depicted as a • symbol (the control) connected to a ⊕
symbol (the target):

|x⟩ |x⟩
|b⟩ |b⊕ x⟩

Here, we’ve shown how the CNOT gate acts on general computational basis states, where
x, b ∈ {0, 1} are arbitrary bits and b⊕ x denotes their XOR (i.e., addition modulo 2).

Another related gate is the version of the CNOT gate with an extra control, that is, the
controlled-controlled-NOT gate, most commonly referred to as the Toffoli gate. As a circuit, it
looks like

|x⟩ |x⟩
|y⟩ |y⟩
|b⟩ |b⊕ xy⟩

where x, y, b ∈ {0, 1} are arbitrary bits (xy is the product of x and y). Notice that the third bit
is flipped exactly when both controls are 1.
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The Toffoli gate is in some sense more powerful than the CNOT gate since it can be used to
generate the CNOT gate. Notice that if we set the second input qubit above to |1⟩ (i.e., y = 1),
then the remaining effect on the remaining two qubits is exactly the CNOT gate. We will see
later however, that the reverse is not true—we cannot just use the CNOT gate to generate a
Toffoli gate.

Finally, let’s discuss the SWAP gate, another important “classical reversible” gate on 2
qubits. Aplty named, the SWAP gate swaps qubits, i.e., for all x, y ∈ {0, 1} it maps:

|xy⟩ 7→ |yx⟩ .

In a circuit diagram, it is depicted as

|x⟩ |y⟩
|y⟩ |x⟩

One can check the following nice identity:

=

In other words, we can replace every SWAP gate in a circuit with 3 CNOT gates. This is a
common theme we will continue to see—we can take some gates as the fundamental ones
that will generate the rest.

Change of basis operations

Evidently, we need a gate that can create a superposition of inputs from a classical basis state.
The Hadamard gate is the canonical choice for such an operation. It has the action

H |0⟩ = |0⟩+ |1⟩√
2

:= |+⟩ H |1⟩ = |0⟩ − |1⟩√
2

:= |−⟩

on the computational basis. Notice that Hadamard gate has given rise to a new basis, the
{|+⟩ , |−⟩} basis. In fact, Hadamard switches back and forth between the computational basis
and this new basis. That is, the Hadamard gate is its own inverse: H2 = I. As a circuit, it is
shown as

|x⟩ H
|0⟩+(−1)x|1⟩√

2

for any x ∈ {0, 1}.
As another example, let’s consider a circuit built from Hadamard and CNOT gates:

H H

H H
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One way of understanding this circuit would be to just explicitly compute the unitary matrix
(H⊗H)CNOT(H⊗H), but it is often more helpful to instead look at how the system evolves
over a basis. Let’s see how it acts on the computational basis, considering one gate at a time:

|00⟩ H⊗H−−−→ |+⟩ ⊗ |+⟩ =
( |0⟩+ |1⟩√

2

)
⊗
( |0⟩+ |1⟩√

2

)
=
|00⟩+ |01⟩+ |10⟩+ |11⟩

2

That is, after applying H ⊗H, we have the uniform superposition over 2-qubit computational
basis states. We know that the CNOT gate just permutes the elements of the computational
basis, or, in other words, it must do nothing to do the above state:

|00⟩+ |01⟩+ |10⟩+ |11⟩
2

CNOT−−−−→ |00⟩+ |01⟩+ |10⟩+ |11⟩
2

.

Of course, if we’ve done nothing to the state, then it must also factorize as

|+⟩ ⊗ |+⟩ = (H ⊗H) |00⟩ .

Therefore, the final layer of Hadamard gates returns the state to |00⟩. That is, after all that
computation, we see that the circuit acts as the identity on the |00⟩. For completeness, let’s
see one more case (the input |01⟩) in its entirety:

|01⟩ H⊗H−−−→
( |0⟩+ |1⟩√

2

)
⊗
( |0⟩ − |1⟩√

2

)
=
|00⟩ − |01⟩+ |10⟩ − |11⟩

2

CNOT−−−−→ |00⟩ − |01⟩ − |10⟩+ |11⟩
2

= |−⟩ ⊗ |−⟩
H⊗H−−−→ |11⟩

If we were to continue with the entire computational basis, we would see

|00⟩ 7→ |00⟩ , |01⟩ 7→ |11⟩ , |10⟩ 7→ |10⟩ , |11⟩ 7→ |01⟩ .

We’ve seen this gate before. It’s just the CNOT gate with the control on the second qubit
instead of the first! That is, we’ve derived the following circuit identity:

H H
=

H H

Notice that up until this point, every gate that we’ve introduced is real—the all elements
of the unitary matrix representing the gate are real numbers. Let’s now introduce some gates
that have complex entries.

Phase gates

The gate most commonly referred to as the “phase gate” is the single-qubit diagonal gate S
that simply multiplies the |1⟩ state by a phase of i:

S |0⟩ = |0⟩ S |1⟩ = i |1⟩
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Another type of phase gate, most commonly called a T -gate, is the square root of this
operation:

T |0⟩ = |0⟩ T |1⟩ = ei
π
4 |1⟩

Unsurprisingly, there are many other common gates that we have yet to define. Thankfully,
the gates we have already allow us to do essentially everything we want.

Universality, approximations, and circuit size

A gate set is the collections of gates that one can use in the construction of a circuit. Typically,
when a gate is included in a gate set, then you’re allowed to apply that gate as many times
you like on whichever subset of qubits that you like.

Universality captures the notion that a particular gate set can be used to construct any
possible quantum operation. There are several different kinds of universality you might want:

• Exact Universality: For any n-qubit unitary, there is a circuit that exactly compute the
unitary.

• Approximate Universality: For any n-qubit unitary, there is a circuit that approximately
computes the unitary. One common measure of closeness is the operator norm.

• Computational Universality: For any n-qubit unitary, the probability distribution result-
ing from measuring the first qubit can be approximated by measuring the first qubit of
the circuit. For example, it turns out that real quantum gates (without complex entries)
are sufficient for computational universality, whereas they clearly fail on the other two
notions of universality.

Given that we have a universal gate set, how many gates do we actually need to construct
an arbitrary unitary? Let’s look at the exact case, where we can get an estimate based on the
number of parameters it takes to specify arbitrary unitary matrix. The first claim is that an
arbitrary complex d× d unitary matrix U is specified by d2 real parameters.

To see this, first note there are d2 entries in the matrix, each with a complex part and a real
part, that is, 2d2 real parameters total. However, the unitary constraint UU † = I imposes d2

algebraically independent real conditions (d for the fact that the norm of each column should
be 1, and d(d − 1) conditions for the fact that the complex inner product of each row should
be 0).

If our gate set consists of gates that only act on a constant number of qubits (which is often
the convention), then each such gate only contributes constantly many real parameters to the
construction of the unitary. Therefore, we must have Ω(4n) gates to construct an arbitrary
n-qubit unitary exactly.

A generalization of this result shows that this lower bound is essentially tight for approx-
imation computation as well—Ω(4n log(1/ϵ)) gates are required to approximately compute
any unitary to within ϵ-accuracy with respect to the operator norm [DN06]. That is, a unitary
U is ϵ-close to unitary V if

∥U − V ∥op = sup
ψ
∥(U − V ) |ψ⟩∥2 ≤ ϵ.

Thankfully, there is a matching (up to polylog factors) circuit building algorithm as well.
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Theorem 2.1 (Solovay-Kitaev [Kit97]). Given an approximately universal gate set, there is a
circuit to appoximate any unitary to ϵ-accuracy with O(4npolylog(1ϵ )) gates.

The version of the Solovay-Kitaev theorem stated above is actually the result of Bouland
and Giurgica-Tiron [BGT21], who show how to work with general gate sets. Unfortunately,
their result suffers in the exponent of the log factor. The original and most-efficient Solovay-
Kitaev theorems require that if a gate is in the gate set, then its inverse is also in the gate set.
The current best result in this setting is by Kuperperg, who shows a bound ofO(4n log1.441(1/ϵ))
gates [Kup23].

Principle of Deferred Measurement

So far in this section, we’ve used unitary gates as the only operations in a quantum circuit.
That is, we have been implicitly assuming that measurements are performed at the end of the
circuit. Measurement is a non-unitary operation, so is it possible that by using intermediate
measurements in the “middle” of the circuit, we might be able to more efficiently construct a
particular unitary operation?

The principle of deferred measurement says that each intermediate measurements can es-
sentially be pushed to the end of circuit by introducing a new ancillary qubit. The resulting
probably distribution over all measurments made in the circuit will be the same before and
after the transformation. The figure below depicts a general form of this transformation:

|ψ⟩

a

Va −→

|0⟩
a

|ψ⟩ V0 V1

The left side shows a quantum circuit where the intermediate measurement has outcome
a ∈ {0, 1} and unitary Va is applied as a result. The right side shows a quantum circuit where
this measurement has been deferred to the end of the circuit by pushing it onto an ancilla.
(Note: a control gate with an open circle is usually used to denote that the gate is controlled
on 0, rather than 1.)

To verify correctness of this procedure, it suffices to check that tracing out the first qubit
on the right side circuit results in the same density matrix as you get from the left.

2.2 The complexity class BQP

This section relies on a background in classical complexity theory. For a short review of some
of the fundamental classical complexity classes, see Chapter A.

To properly define the quantum complexity class BQP, we need to first discuss how a
quantum circuit is encoded. Let us suppose that the circuit is constructed from some reason-
able universal gate set (i.e., all the amplitudes used in the gates are efficiently computable).
We will use the notation ⟨Q⟩ to denote the encoding of a circuit Q as a bit string. We now
discuss the requirement for a proper encoding:

1. The encoding is unique: mapping from a circuit to its encoding must be injective.
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2. The encoding is not too big: if Q has m gates, then ⟨Q⟩ has at most poly(m) bits.

3. The encoding is not too small: if Q has m gates, then ⟨Q⟩ has at least m bits.

Equipped with an encoding, we can now talk about Turing machines whose output is (an
encoding of) a quantum circuit. A circuit family {Qn}∞n=1 is poly-time uniform if there exists
a poly-time Turing machine such that on input 1n outputs ⟨Qn⟩. We are now ready to define
the complexity class capturing efficient quantum computation:

Bounded-error Quantum Polynomial Time (BQP):
Languages L such that there exists poly-time uniform class of quantum circuits {Qn}∞n=1 and
a polynomial q such that for all x ∈ {0, 1}n:

• If x ∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ ⊗
∣∣0q(n)

〉
is at least 2

3 .

• If x /∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ ⊗
∣∣0q(n)

〉
is at most 1

3 .

2.3 How does BQP compare to its classical complexity friends?

In this section, we will see how BQP fits into the zoo of classical complexity classes. To
start, let’s start with an “obvious” claim—namely, efficient quantum computation is at least as
powerful as efficient classical computation. That is, BPP ⊆ BQP.

To do this, it will be useful to also define BPP in terms of circuits:

Bounder-error probibalistic polynomial time (BPP)
The class of languages L for which there is a poly-time uniform family of classical circuits
{Cn}∞n=1 and a polynomial q such that for all x ∈ {0, 1}n:

• If x ∈ L, C(x, r) = 1 for at least 2/3 of strings r ∈ {0, 1}q(n).

• If x ̸∈ L, C(x, r) = 1 for at most 1/3 of strings r ∈ {0, 1}q(n).
Once again, we assume that the classical circuits are compiled from a reasonable gates

like AND and NOT gates.

Theorem 2.2. BPP ⊆ BQP.

Proof. We will show that quantum circuits can directly simulate AND and NOT gates, which
are universal for classical computation. NOT is already unitary operator, so there is nothing
to do. To simulate AND, we simply observe that the Toffoli computes AND on the target. That
is,

|x⟩ |x⟩
|y⟩ |y⟩
|0⟩ |x ∧ y⟩

for all x, y ∈ {0, 1}. Therefore, every gate in a classical circuit can be replaced by a quantum
one. Technically, classical circuits can “fan out” the output of a gate to serve as input for
several other gates. We can simulate this behavior in a quantum circuit through a simple
CNOT gate that acts as a copy gate:
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|x⟩ |x⟩
|0⟩ |x⟩

We also need to deal with the random bits in the definition of BPP that are not present in
the definition of BQP. This is also straightforward, if we want to simulate a random bit, we
simply start the corresponding qubit of the quantum circuit in the |+⟩ state.

Finally, we note that the reduction sketched above can be done efficiently. That is, a poly-
time uniform family of classical circuits for a language in BPP implies there is also a poly-time
uniform family of quantum circuits for the same language. Therefore, BPP ⊆ BQP.

What about classical upper bounds on the power of poly-time quantum computation?
Let’s start with the most basic bound, exponential time:

Theorem 2.3. BQP ⊆ EXP.

Proof. Any n-qubit state can be represented as a length-2n complex vector. Every quantum
gate on an n-qubit state is unitary matrix of size 2n×2n. The state after application of the gate
is obtained by simply multiplying the vector by the matrix. Since such matrix-vector products
can be computed in O(4n) time, and simulating the circuit requires at most polynomially
many matrix-vector product operations, we then have BQP ⊆ EXP.

In some sense, the above containment above showcases what many think to be true about
quantum computation—to classical simulate a general quantum computer, you fundamen-
tally need some kind of brute-force exponential time computation. However, notice that the
exponential-time algorithm is both time inefficient and space inefficient. It turns out that a
classical simulation is possible with polynomial space, or in other words, BQP ⊆ PSPACE.

The proof of this fact will be to consider a quantum computation as a sum over paths in
a tree. Let’s explore this idea with an exmaple. Consider the (very simple) circuit H2. Let’s
look how the state |0⟩ evolves gate by gate:

|0⟩ H−−→ |0⟩+ |1⟩√
2

H−−→
|0⟩+|1⟩√

2
+ |0⟩−|1⟩√

2√
2

=
|0⟩+ |1⟩+ |0⟩ − |1⟩

2
.

We can arrange these same steps in a tree:

|0⟩

1√
2
|0⟩

1
2 |0⟩ 1

2 |1⟩

1√
2
|1⟩

1
2 |0⟩ −1

2 |1⟩

H

H

Of course, for this simple example, we know the result is simply |0⟩ after simplification.
but we don’t have to simplify the expression. Instead, we can keep it as a linear combination
of |0⟩ , |1⟩ , |0⟩ , |1⟩ with respective coefficients 1

2 ,
1
2 ,

1
2 ,−1

2 . Why might we want to do this? The
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key is that in the tree picture, the final states in the tree are just computational basis states
rather than superpositions of computational basis states (as would be the case for a general
quantum state). We can keep track of the amplitude and the classical basis state in polynomial
space.

To do a generic quantum computation, we will traverse the entire computation tree, sum-
ming up the amplitudes when we get to leaves. Let’s see how these ideas fit together.

Theorem 2.4. BQP ⊆ PSPACE.

Proof. Let’s start by making the simplifying assumption that the quantum circuit is con-
structed from Toffoli and Hadmard gates since those gates are computationally universal.
This means that we can specify any leaf in the tree by a bit string indicating the path taken
on all Hadamard gates from the root to the leaf (e.g., a 0 says to take the left branch, and
a 1 says taking the right branch). Since the quantum circuit is of polynomial size, these leaf
pointers are also of polynomial size.

Specifically, if the quantum circuit has h Hadamard gates, then we can designate a path
as a length-h bit string. If we iterate through all of these leaf pointers, we can traverse the
entire computation tree. Since the leaf pointers are of polynomial size and the intermediate
states of the computation tree consist of a computational basis state and a single amlitude,
we can traverse the entire tree using only polynomial space. To finish, the classical simulation
algorithm, we need to specify what information we collect at the leaves of the tree once the
traversal processes them.

We will devise a classical algorithm that computes the acceptance probability of the quan-
tum circuit. If the final state of the quantum circuit is

|ψ⟩ =
∑

y∈{0,1}n−1

α0y |0y⟩+ α1y |1y⟩ ,

then our goal is compute the probability of measuring |1⟩ on the first qubit:

pacc =
∑

y∈{0,1}n−1

|α1y|2.

Our plan will now simple—for each y ∈ {0, 1}n−1, we traverse the entire tree looking for
computation paths that end in a |1y⟩ state, adding up the amplitudes as we go. The full
pseudocode for the algorithm is below:
pacc ← 0
for y ∈ {0, 1}n−1 do

α1y ← 0
for path p ∈ {0, 1}h in computation tree do

if path p ends in leaf state |1y⟩ with amplitude β then
α1y ← α1y + β

pacc ← pacc + |α1y|2
return pacc

If the calculated the probability of acceptance is greater than 2/3, the classical algorithm
accepts; otherwise, it rejects.
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Can this be improved? Somewhat surprisingly, the answer is “yes”. Poly-size quantum
circuits can be simulated in PP, which captures decision problems solvable by counting the
number of satisfying instances of an NP problem. Formally, recall the definition of PP: the
class of languages L such that there exists a deterministic poly-time Turing machine M and
polynomial q such that for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts for more than 1/2 of strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts at most 1/2 of strings y ∈ {0, 1}q(n).

Theorem 2.5. BQP ⊆ PP.

Proof. Once again, let’s look at the computation tree of a poly-size quantum circuit built from
Toffoli and Hadmard gates. Once again, the number of leaves in the tree is given by 2h

where h is the number of Hadamard gates. The key idea is it that because the magnitude of
the amplitude at every leaf is exactly 1/

√
2h, the final amplitude on any given basis state is

proportional to the number of leaves that have a positive sign minus the number of leaves
that have a negative sign. Let the final state before measurement of the quantum algorithm
be

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ .

Let ax be the fraction of all leaf nodes that are in state |x⟩ and have positive weight, and let bx
be the fraction of all leaf nodes that are in state |x⟩ and have positive weight. We can express
the amplitude of the state as

αx =
√
2h(ax − bx)

for real numbers ax, bx ≥ 0.
Now consider the following classical algorithm. Randomly and uniformly follow one

branch of the tree and record the state |x⟩ at the leaf, then return to the beginning of the
tree and randomly follow another branch of the tree and record the state |y⟩ at the leaf. If
x ̸= y, then flip a coin to determine if we accept or reject the input. However, if x = y, then
we want to determine if the signs of these states are likely to add constructively or destruc-
tively. Explicitly, if the first qubit of x = y is a 1, then accept if the coefficients on x and y
have the same sign and reject if they have opposite signs, and if the first qubit of x = y is a 0,
then accept if the coefficients have opposite signs and reject if they have the same sign.

Let’s now see why this combination of accept/reject rules would give you an algorithm
which accepts more than 50% of the time only when the quantum algorithm accepts. Notice
that when x ̸= y, our decision rule is simply a coin flip, which succeeds with probability 50%
regardless of the truth. It suffices to show our decision rule succeeds with probability strictly
more than 1/2 when x = y. Notice that the probability of seeing the state |x⟩ twice with
constructive weights is given by

Pr[seeing |x⟩ twice with constructive weights] = a2x + b2x.

The probability of seeing the state |x⟩ twice with destructive weights is given by

Pr[seeing |x⟩ twice with destructive weights] = 2axbx
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Suppose the quantum algorithm accepts (i.e., measures “1” on the first qubit) with probability
pacc. We get

pacc =
∑

y∈{0,1}n−1

α2
1y = 2h

∑

y∈{0,1}n−1

(a1y − b1y)2 . (2.1)

On the other hand, this implies that the algorithm rejects with probability

1− pacc =
∑

y∈{0,1}n−1

α2
0y = 2h

∑

y∈{0,1}n−1

(a0y − b0y)2 (2.2)

Dividing by 2h and subtracting Equation (2.2) from (2.1), we get

2pacc − 1

2h
=
∑

y

(a1y − b1y)2 −
∑

y

(a0y − b0y)2

=
∑

y

(a21y + b21y + 2a0yb0y)−
∑

y

(a20y + b20y + 2a1yb1y)

Notice that the first sum on the right hand side corresponds exactly to the probability of
seeing either (i) two states starting with 1 and with constructive weights, or (ii) two states
starting with 0 and with destructive weights. Ignoring the 50-50 coin tosses from the classical
simulation procedure that don’t end in the same state, this is exactly the probability that the
procedure outputs YES. Similarly, the second sum is the probability that our classic simulation
procedure outputs NO. This then gives

2pacc − 1

2h
= Pr[simulation outputs YES]− Pr[simulation outputs NO],

Hence, when pacc ≥ 2/3 left hand side is positive. Since the classic simulation is more likely to
output YES, and so the PP machine accepts. When pacc ≤ 1/3, the left hand side is negative,
so the classical simulation is more likely to output NO, and therefore the PP machine rejects.
This concludes the proof.

Looking at all of these complexity classes and inclusions, we can start to get some intuition
for why it is hard to definitively prove that efficient quantum computation (i.e., BQP) is more
powerful than efficient classical computation (i.e., P). First, using Theorem 2.2, we have that
P ⊆ BPP ⊆ BQP. Second, using Theorem 2.4, we have that BQP ⊆ PSPACE. Chaining these
two results together, we can sandwhich BQP in between P and PSPACE:

P ⊆ BQP ⊆ PSPACE.

So, now suppose we could definitively prove that quantum computation is strictly more pow-
erful than classical computation, i.e., that P ⊊ BQP. Then, by transitivity, we would simul-
taneously have shown that P ⊊ PSPACE. However, the P vs. PSPACE question is one of the
many notoriously difficult questions in classical complexity, commensurate in some sense to
the famous P vs. NP question. That is, we can’t hope to prove quantum advantage without
also solving some decades old and famously difficult problems in classical complexity.

Part of the goal in these lecture notes will be to find ways to make progress anyways.
In some settings, we will only be able to show theoretical evidence (rather than definitive
proof) of quantum advantage. In other settings, we will be able to show definitive quantum
advantage, but only by changing the question slightly.



Chapter 3

Query Complexity

In this chapter, we explore one of our first tools for comparing the power of quantum and
classical computation—query complexity. In the query complexity setting, we imagine there
is some property of a function that we are trying to compute. The catch is that we can only
learn things about the function by “querying” its value on a single input at a time. The number
of times we need to query the function to learn the property is new measure of complexity
(rather than something like the gate count in the quantum circuit).

The benefit of this approach is that the blackbox nature of the function greatly restricts
the kinds of algorithms (both quantum and classical) that you could use to solve the problem.
This will allow us to prove tight bounds on the query complexity for both the quantum and
classical computers. When the quantum computation requires significantly fewer queries, we
have evidence of a quantum advantage. In fact, many of the efficient query algorithms we
will discuss in this chapter are also efficient in the more traditional sense (i.e., in BQP), and
therefore, form the basis for some of the most promising quantum algorithms.

For some intuition for the power of this setting, imagine a kind of satisfiability problem
captured by a function f : {0, 1}n → {0, 1}. That is, we’d like to know if there is some input
x ∈ {0, 1} such that f(x) = 1. Now imagine the function is instantiated by polynomially
many constraints, e.g., an NP-complete problem like 3-SAT. It is a famously open problem if
NP-hard problem like this can be solved in polynomial time. However, when we look at the
query version of this problem—that is, we can only query f on inputs x ∈ {0, 1}n one at a
time—the problem is obviously hopelessly difficult for a classical polynomial-time machine.
If there is at most one possible input x such that f(x) = 1, we have to make exponentially
many queries to determine if such an x exists.

Despite the restricted access model for query algorithms, we will see that there can still
be nontrivial algorithms for a variety of different problems. The purpose of this section is
to showcase how quantum algorithms fare in this setting in comparison to their classical
counterparts.

3.1 Defining a quantum oracle

Querying a function f : {0, 1}n → {0, 1}m is pretty straightforward in the classical circuit
setting—the queries consist of n-input m-output gates, and the query complexity is the num-
ber of these query gates that are required to solve the problem.

28
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Let’s now discuss what exactly it means to query the function quantumly. We will use two
oracle models. First, we define the standard oracle Bf which acts on two registers, an input
register and a output register:

Bf |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}m. That is, the standard oracle just computes the value of the
function on the input and dumps it (reversibly) into the output register.

Is this a reasonable model? In other words, how can we justify that we are not cheating
by giving the quantum algorithm a query model which is fundamentally more powerful than
the query model in the classical setting (in a way which it unrelated to the power of quantum
computation)? One way to see this is to imagine what it would look like to instantiate the
function f for a practical problem. For any setting where there is a classical circuit for f (e.g.,
in our example where f was a 3-SAT formula), then the quantum circle can implement the
oracle Bf by straightforwardly implenting the classical circuit in superposition. On the other
hand, if there’s no classical circuit for f , then the classical oracle also doesn’t make any sense!

As it turns out, it’s often useful to have another query model where the output of f is
computed in the phase of the input. For every function f : {0, 1}n → {0, 1}, the phase oracle
Of is defined so that

Of |x⟩ = (−1)f(x) |x⟩
for all x ∈ {0, 1}n. The phase oracle is only marginally different from the standard oracle. In
fact, the standard oracle can simulate the phase oracle with a single ancilla qubit:

|x⟩ f (−1)f(x) |x⟩...
...

|−⟩ |−⟩

The circuit diagram shows the Bf oracle where the function f is computed on the |x⟩ register
and XOR’d into the |−⟩ register. We have

|x⟩ |−⟩ Bf−−→ |x⟩
( |f(x)⟩ − |1⊕ f(x)⟩√

2

)
= (−1)f(x) |x⟩ |−⟩ = (Of |x⟩) |−⟩ .

An almost-identical construction shows that the Bf oracle can be simulated by a single query
to a controlled-Of oracle.

3.2 Fourier sampling problems

Let’s start with one of the simplest examples of a quantum-classical query separation. Our
goal will be determine if a function f : {0, 1} → {0, 1} is constant or not, i.e., if f(0) = f(1)
or not. Classically, it is clear that we need two queries. We must check both f(0) and f(1) to
know if they are equal.

We claim there is a simple 1-query quantum circuit (Deutsch’s algorithm) for this task:
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|0⟩ H Of H

Tracing through the circuit, we get

|0⟩ H−→ |0⟩+ |1⟩√
2

Of−−→ (−1)f(0) |0⟩+ (−1)f(1) |1⟩√
2

= (−1)f(0)
(
|0⟩+ (−1)f(0)⊕f(1) |1⟩√

2

)

H−→ (−1)f(0) |f(0)⊕ f(1)⟩

Therefore, if f(0) = f(1), we will measure |0⟩ with 100%, and if f(0) ̸= f(1), we will measure
|1⟩ with 100% probability. That is, we have a quantum algorithm that distinguishes between
constant and non-constant functions with 100% probability.

A 1 vs. 2-query separation may not seem like a big deal, but essentially the exact same al-
gorithm can lead to a much more impressive separation. To get these impressive separations,
however, we will have to make a sacrifice. Namely, we will need to look at promise problems,
that is, problems where the input function f has some specific property, called the “promise”.
Importantly, we will never judge our algorithm’s correctness on functions f that don’t satisfy
the promise. This will allow us to devise algorithms that exploit some very specific structure
for a query advantage.

Let’s begin with a problem that’s the n-qubit generalization of Deutsch’s problem:

Deutsch-Jozsa problem
Function: f : {0, 1}n → {0, 1}
Promise: f is either

Constant: All outputs of f are equal. ∀x, y ∈ {0, 1}n, f(x) = f(y); or
Balanced: f has equal number of 0 and 1 outputs. |{x|f(x) = 1}| = 2n−1.

Goal: Determine if f is constant or balanced.

Notice that a classical deterministic machine requires 2n−1 + 1 queries to f . In the worst
case, the first 2n−1 queries to f yield the same output. It could be that all other unqueried
inputs yield the same value (i.e., the function is constant) or all unqueried values yield the
other value (i.e., the function is balanced). Therefore, we need 1 more query to solve the
problem.

Miraculously, the quantum algorithm still only needs 1 query, and in fact, the quantum
circuit is nearly identical to the one we saw previously:

|0n⟩ H⊗n Of H⊗n

Let’s step through the circuit, one layer of gates at a time:

1. Apply a layer of Hadamard gates:

|0n⟩ H⊗n

−−−→ 1√
2n

∑

x∈{0,1}n
|x⟩
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2. Apply the phase oracle:

1√
2n

∑

x∈{0,1}n
|x⟩ Of−−→ 1√

2n

∑

x∈{0,1}n
(−1)f(x) |x⟩

3. Apply final layer of Hadamard gates:

1√
2n

∑

x∈{0,1}n
(−1)f(x) |x⟩ H⊗n

−−−→ 1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩

Here, we are using “·” to denote the inner product between x and y as binary vectors
(i.e., x · y =

∑n
i=1 xiyi). To see why this is true, we remark that the result of applying

an n-fold Hadamard gate on an arbitrary classical state |x⟩ can be written as

H⊗n |x⟩ =
n⊗

i=1

(|0⟩+ (−1)xi |1⟩) =
n⊗

i=1

(
(−1)xi·0 |0⟩+ (−1)xi·1 |1⟩

)

=
n⊗

i=1


 ∑

yi∈{0,1}
(−1)xi·yi |yi⟩


 =

∑

y∈{0,1}n
(−1)

∑n
i=1 xiyi |y⟩ .

What happens when we measure the state in Step 3? Let’s look specifically at the proba-
bility we measure the all-zeros state (i.e., y = 0n). Since x · 0n = 0 for all x ∈ {0, 1}n, the
amplitude on |0n⟩ is

1

2n

∑

x∈{0,1}n
(−1)f(x).

If the function f is constant, then f(x) = f(0n) for all x ∈ {0, 1}n, so

1

2n

∑

x∈{0,1}n
(−1)f(0n) = (−1)f(0n)

2n


 ∑

x∈{0,1}n
1


 = (−1)f(0n)

In other words, if we were to measure the state, then we would observe the all-zeros state
with 100% probability.

If f is balanced, instead of all the amplitudes on the all-zeros state adding up construc-
tively, they all cancel each other out:

1

2n

∑

x∈{0,1}n
(−1)f(x) = |{x | f(x) = 0}| − |{x | f(x) = 1}|

2n
= 0.

That is, if f is balanced, then we measure a state which is not the all-zeros state with 100%
probability. Combining the two cases above, we can see that whether or not we measure the
all-zeros state immediately solves the Deutsch-Jozsa problem.

At first glance, this 1 vs. Θ(2n) quantum-classical query separation seems quite amazing,
and possibly the best we could hope for. However, recall that the classical lower bound
was for deterministic classical computation. If we were to allow for classical randomness,
the problem becomes dramatically simpler. The classical algorithm would simply query f
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on a few uniformly random inputs. If the function is balanced, then you are likely to see
two different outputs using only constantly many queries (to formalize this argument, use the
Chernov bound). That is, quantum algorithms are at best only marginally better than classical
randomized algorithms for the Deutsch-Jozsa problem.

Let’s now consider a similar problem where the classical algorithm will struggle a bit more:

Berstein-Vazirani problem
Function: f : {0, 1}n → {0, 1}
Promise: f is linear. For all x ∈ {0, 1}n, f(x) = x · s for some secret string s ∈ {0, 1}n
Goal: Find s.

Once again, let’s start by discussing the best classical query algorithm. Unlike the Deutsch-
Jozsa problem, there is a fairly efficient algorithm—only n queries are needed. To see this,
consider the algorithm that the queries f on the inputs e1 := 10 · · · 0, e2 := 010 · · · 0, and so
on up to en := 0 · · · 01. Notice that f(ei) = ei · s = si, so each query reveals one of the n bits
of s.

Can we do better? perhaps by using randomness? Unfortunately, not. To see this, consider
that each query x · s = f(x) gives us a linear equation (over F2) where there are n unknown
variables (i.e., the n bits of s). A linear system of equations with n-variables can only have a
unique solution if there are at least n equations. Therefore, we require at least n queries.

As it turns out, the quantum algorithm is identical to the one for the Deutsch-Josza
problem—a layer of Hadamards, followed by the phase oracle, followed by another layer of
Hadamards. The only thing that changes is what we conclude from the measurement. There-
fore, let’s start from the state we constructed in Step 3 in our algorithm for the Deutsch-Josza
problem:

1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩ .

Using the fact that f(x) = x · s, we get

1

2n

∑

x,y∈{0,1}n
(−1)x·s+x·y |y⟩ = 1

2n

∑

x,y∈{0,1}n
(−1)x(s⊕y) |y⟩

Looking at the amplitude on state |s⟩, we see that the term (−1)x(s⊕y) = 1 for all x since
s ⊕ s = 0. Since there are 2n values for x, we immediately get that amplidude on |s⟩ is 1. In
other words, we measure |s⟩ with 100% probability, but s was exactly what we were looking
for!

Therefore, the Berstein-Vazirani problem gives us a 1 vs. n quantum-classical query separa-
tion. While this is less impressive than the initial separation we obtained for the Deutsch-Jozsa
problem, it’s worth emphasizing that this separation even holds against randomized classical
algorithms.

As a final remark, we note that both the Deutsch-Josza and Berstein-Vazirani algorithms
are instances of Fourier sampling. To see this, let’s quickly introduce the Fourier basis. First,
for all y ∈ {0, 1}n, we define the basis functions

χy(s) := y · s (mod 2)
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for all y ∈ {0, 1}n. These functions are orthonormal with respect to following inner product
on real-valued functions f, g : {0, 1}n → R:

⟨f, g⟩ := 1

2n

∑

x∈{0,1}n
(−1)f(x)+g(x).

To see orthonormality of these basis vectors, we compute

⟨χy, χz⟩ =
1

2n

∑

x∈{0,1}n
(−1)x·y+x·y = 1

2n

∑

x∈{0,1}n
(−1)x·(y⊕z) =

{
1 if y = z

0 if y ̸= z
.

Since we’ve defined a basis of 2n independent functions, every Boolean function f : {0, 1}n →
{0, 1} can be written uniquely as

f(x) =
∑

y∈{0,1}n
f̂(y)χy(x)

for coefficients f̂(y) ∈ R. Using the inner product, we can explicitly compute the Fourier
coefficients as

f̂(y) = ⟨f, χy⟩ =
1

2n

∑

x∈{0,1}n
(−1)f(x)+χy(x).

Let’s now consider what the Deutsch-Josza/Berstein-Vazirani algorithm does when we expand
f in the Fourier basis. Once again, explicitly computing H⊗nOfH⊗n |0n⟩, we get

1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩ =

∑

y∈{0,1}n


 1

2n

∑

x∈{0,1}n
(−1)f(x)+χy(x)


 |y⟩ =

∑

y∈{0,1}n
f̂(y) |y⟩ .

In other words, what our quantum algorithm is actually doing for the Deutsch-Josza and
Berstein-Vazirani problems is sampling a y ∈ {0, 1}n with probability equal to |f̂(y)|2. There-
fore, any function f that has simple Fourier expansion is immediately a promising candidate
for an efficient quantum query algorithm.

3.3 Hidden subgroup problems

Let’s now deviate slightly from our Fourier sampling framework to obtain a problem on which
the classical algorithm will really struggle:

Simon’s problem
Function: f : {0, 1}n → {0, 1}n
Promise: Outputs of f are paired by secret s ∈ {0, 1}n. That is, f(x) = f(y) iff x = y ⊕ s.
Goal: Find s.

Notice that to solve Simon’s problem it suffices to find a collision, a pair of strings x ̸=
y such that f(x) = f(y). If we find such an input pair, we can deduce s by taking their
difference:

f(x) = f(y) =⇒ x = y ⊕ s =⇒ s = x⊕ y.
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Notice that if we query random inputs, we can expect to find a collision after only O(
√
2n)

queries via the birthday paradox bound. In fact, this algorithm can be derandomized so that
O(
√
2n) queries are sufficient for a classical determistic algorithm [CQ18]. Intuitively, after k

queries, we’ve looked at
(
k
2

)
≈ k2 pairs of inputs, so we need k ≈ 2n/2 queries to find one of

the 2n−1 pairs. This same argument also suffices to give a lower bound of Ω(
√
2n) queries.

The quantum algorithm proceeds by running the following circuit O(n) times:

|0n⟩ H⊗n

Bf

H⊗n

|0n⟩

Let’s once again analyze this circuit layer by layer:

1. Apply a layer of Hadamard gates:

|0n⟩ |0n⟩ H⊗n⊗I⊗n

−−−−−−→ 1√
2n

∑

x∈{0,1}n
|x⟩ |0n⟩ .

2. Apply the standard oracle:

1√
2n

∑

x∈{0,1}n
|x⟩ |0n⟩ Bf−−→ 1√

2n

∑

x∈{0,1}n
|x⟩ |f(x)⟩

3. Measure the second register, getting outcome f(x):

1√
2n

∑

x∈{0,1}n
|x⟩ |f(x)⟩ measure−−−−−→ |x⟩+ |x⊕ s⟩√

2
|f(x)⟩

The idea is that there are only two inputs that are consistent with a measurement of f(x)
in the second register, both x and x ⊕ s. Therefore, the first register is a superposition
over those inputs. We can now drop the second register since it is unentangled with the
first.

4. Apply another layer of Hadamard gates:

|x⟩+ |x⊕ s⟩√
2

H⊗n

−−−→ 1√
2n+1

∑

y∈{0,1}n

(
(−1)x·y + (−1)y·(x⊕s)

)
|y⟩

5. Measure first register to obtain uniformly random y ∈ {0, 1}n such that y · s = 0:

1√
2n+1

∑

y∈{0,1}n

(
(−1)x·y + (−1)y·(x⊕s)

)
|y⟩ = 1√

2n+1

∑

y∈{0,1}n
(−1)x·y

(
1 + (−1)y·s)

)
|y⟩

From the right hand side, we can see that if y · s = 1, the amplitude on state |y⟩ is 0.
On the other hand, if y · s = 0, then the amplitude is (−1)x·y/

√
2n−1. Taken together,

this implies that the measurement returns a uniformly random y ∈ {0, 1}n such that
y · s = 0.
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To complete the quantum algorithm for Simon’s problem, we note that the measurement
result y gives us a random linear equation (over F2), y · s = 0. If we could collect the n − 1
linearly independent equations that span the subspace orthogonal to s, we could solve for
the bits of s. Since our measurement results are uniformly random within this space, we
will collect n − 1 linearly independent equations with only O(n) measurements with high
probability.

To conclude, we finally have a problem in which quantum computers are getting an ex-
ponential advantage over classical computers—O(n) vs. O(

√
2n) queries. In fact, Simon’s

problem is special case of a wider class of problems which (sometimes) admit fast quantum
algorithms.

Hidden Subgroup Problem (HSP)
Function: f : G→ {0, 1}∗ where G is a group
Promise: f is constant on a hidden subgroup H ≤ G. That is, f(x) = f(y) iff xH = yH.
Goal: Find H.

Notice that Simon’s problem is HSP for the group G = Zn2 and the subgroup H = {0n, s}.
In fact, the discrete log problem in Z×

N (a crucial step in Shor’s integer factorization algorithm)
can be cast as an instance of HSP for the additive abelian group G = ZN × ZN . Both of these
algorithms fall within a wide class of efficiently solvable HSP instances:

Theorem 3.1 (Kitaev [Kit95]). HSP for finite abelian groups is in quantum polynomial time.

What about non-abelian groups? The story is surprisingly subtle. While we don’t know of
any efficient quantum algorithms for such groups, there are efficient algorithms as measured
by the query complexity:

Theorem 3.2 (Ettinger, Høyer, Knill [EHK04]). The query complexity of HSP for any finite
group G is polynomial in log |G|.

As some small taste for the power of such HSP instances, if the Ettinger-Høyer-Knill algo-
rithm could be made time-efficient, then there would be an efficient quantum algorithm for
the graph isomorphism problem, which has long evaded fast classical techniques.

3.4 Grover’s algorithm and the unstructured search problem

So far, we’ve seen some huge quantum speedup for various query problems. Importantly,
however, these exponential speedups have been for promise problems where the input in-
stance comes from some restricted class. Let’s now move on to consider total problems, where
the problem must be well-defined over all possible instances.

One might wonder why we cannot just take any promise problem for which a quantum
computer had some kind of advantage and extend it to inputs for which it wasn’t previously
defined. Unfortunately, the issue is that we cannot easily detect the inputs for which the
original promise held. Since we must be able to detect those inputs to answer consistently
on all inputs, it’s unclear how to make such a strategy work. If fact, such a strategy provably
cannot work:
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Theorem 3.3 (Aaronson, Ben-David, Kothari, and Tal [ABDKT20]). The deterministic query
complexity of a total function is at most the quantum query complexity of that function to the
fourth power.

In other words, total functions can only yield polynomial query speedups. That said,
the bound in the theorem is tight up to log factors [ABB+17]—there is a total problem on
which determinstic algorithms require quartically many more queries than the best quantum
algorithm. Instead of looking at total problems in general, let’s look at a specific total problem
that has shaped a lot of the discussion around quantum computers.

Unstructured search
Function: f : {0, 1}n → {0, 1}
Goal: Find x ∈ {0, 1}n such that f(x) = 1 (or report none exists)

It’s worth taking a moment to appreciate how monumental a fast quantum algorithm for
unstructured search would be. Since problems in NP can be phrased as unstructured search
problems (e.g., given a SAT formula, find a satisfying assignment), a poly-time quantum
algorithm for unstructured search would immediately imply that NP ⊆ BQP. Of course, by
Theorem 3.3, we already know such a simple strategy for solving NP problems won’t work.
That is, since classical computers require expoentially many queries to solve unstructured
search, so must quantum computers.

To see that exponentially many classical queries are required, consider the case where
there is at most one input which evaluates to 1. Any classical deterministic algorithm will
need to make 2n queries since it might get unlucky and query 2n − 1 zeroes. Randomness
doesn’t help—even if you query half of the inputs, you only have a 1/2 chance at choosing
the input that evaluates to 1.

BBBV lower bound for search

While Theorem 3.3 leaves open the possibility that unstructured search can be solved with
O(2n/4) queries, this is unfortunately still too optimistic.

Theorem 3.4 (Bennett, Bernstein, Brassard, Vazirani [BBBV97]). The quantum query com-
plexity of unstructured search is Ω(

√
2n).

As we will see later, there are actually many possible ways to prove this lower bound, but
the BBBV lower bound was the first and perhaps most intuitive lower bound technique, so
let’s start with that. First, notice that a generic quantum query algorithm alternates between
applying some unitary and applying the oracle. In other words, after t queries, the state of
our system looks like

UtOfUt−1 · · ·OfU1OfU0 |0n⟩ .
To be fully rigorous here, we would also need to specify a set of ancillary workspace qubits,
but this will not change the analysis and only make the notation more cumbersome, so we
will drop these extra qubits.

A key point about this decomposition is that the unitaries U0, U1, . . . , Ut are fixed and
are independent of what the oracle does. When there are few oracle queries, our goal will
be to show that for every choice of unitaries, there is some state |y⟩ that always has small
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amplitude when queried by the oracle. Because of this, it will be very difficult for the algo-
rithm to “see” whether or not this item is marked. Therefore, we can fool the algorithm into
accepting/rejecting when it shouldn’t.

Let’s first consider what our algorithm does on the constant-zero function. In this case,
the oracle is just the identity, and the algorithm should reject. The state of the algorithm after
t queries is

|ψt⟩ := UtUt−1 · · ·U1U0 |0n⟩ =
∑

x∈{0,1}n
αx,t |x⟩ .

Supposing there are T total queries, define the quantity

mx :=

T−1∑

t=0

|αx,t|2.

to be the sum of the squares of the magnitudes on x over all states |ψt⟩ we have right before
the tth oracle call. We have that

∑

x∈{0,1}n
mx =

∑

x∈{0,1}n

T−1∑

t=0

|αx,t|2 =
T−1∑

t=0


 ∑

x∈{0,1}n
|αx,t|2


 =

T−1∑

t=0

1 = T.

Since mx is non-negative, this implies that there must exist some y ∈ {0, 1}n such that my ≤
T/2n (otherwise, the sum is greater than T ). This y will be the element that the algorithm
fails to properly consider if T is too small. The above argument gives us a bound on the sum
of the squares of the magnitudes for the input y, but it will turn out that we will actually need
a bound on the sum of the magnitudes themselves. Fortunately, by Cauchy-Schwarz, we have

T∑

t=0

|αy,t| ≤

√√√√
T∑

t=1

|αy,t|2 · T =
√
myT ≤

T√
2n
.

Since we can refer to the all-zeros function as the identity, let f be the function which is 1 on
y and 0 elsewhere. Our goal is to distinguish the oracle for f from the oracle for the identity,
but for the purposes of analysis, let’s consider a set of rather strange oracles {O(t)}Tt=0. Here,
O(t) is defined to be the identity for the first t queries and f on the remaining T − t queries.
In other words, the oracle is interpolates between our two function instances. Let’s define the
set of states arising from the application of these oracles as

|φ(t)⟩ := UTO
(t)UT−1 · · ·O(t)U1O

(t)U0 |0n⟩ = UTOfUT−1 · · ·OfUt+1Of |ψt⟩
So, for example, we have that |φ(T )⟩ = |ψT ⟩ is the state for the complete execution of the
quantum algorithm for the constant-zero function, and |φ(0)⟩ is the state for the execution of
the quantum algorithm for f .

If we can show that |φ(t+1)⟩ is close to |φ(t)⟩ for all t, then by the triangle inequality, we
will be able to conclude that the states from the two different problem instances are also close
to each other. We have the following:

∥|φ(t+1)⟩ − |φ(t)⟩∥ = ∥UTOfUT−1 · · ·OfUt+2Of |ψt+1⟩ − UTOfUT−1 · · ·OfUt+1Of |ψt⟩∥
= ∥(UTOfUT−1 · · ·OfUt+2OfUt+1) |ψt⟩ − (UTOfUT−1 · · ·OfUt+1)Of |ψt⟩∥
= ∥|ψt⟩ −Of |ψt⟩∥
= 2|αy,t|
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where we have used the fact that unitaries preserves the 2-norm and the fact that Of |ψt⟩ =
|ψt⟩ − 2αy,t |y⟩. Combining everything together, we get

∥|φ(T )⟩ − |φ(0)⟩∥ ≤
T−1∑

t=0

∥|φ(t+1)⟩ − |φ(t)⟩∥ ≤ 2

T−1∑

t=0

|αy,t| ≤
2T√
2n
.

Hence, we see that for T ≪
√
2n, the two states are close under ℓ2 norm. We want to

show that if the states are close, then all measurement procedures fail to distinguish them
with high probability. To formalize this, let us define the total variation distance between two
discrete probability distributions p, q:

TV(p, q) =
1

2
∥p− q∥1 =

1

2

∑

i

|pi − qi|.

The total variation distance is important because it determines the maximum probability with
which we can distinguish two probability distributions. That is, suppose with 50% probability
we sample from p and with 50% probability we sample from q, the maximum probability with
which we can guess which distribution was sampled from is 1/2 + TV(p, q)/2.

Lemma 3.5. If ∥|ϕ⟩ − |ψ⟩∥2 < ϵ, then the total variation distance from measuring |ϕ⟩ and |ψ⟩
is at most 2ϵ.

Proof. Suppose |ϕ⟩ = ∑
αx |x⟩, |ψ⟩ =

∑
βx |x⟩. For ease of notation, assume αx, βx are all

real numbers, though the proof still works if we allow them to be complex. Let γx = βx − αx.
Now we write

∥|ϕ⟩ − |ψ⟩∥2 =
√∑

x

γ2x ≤ ϵ.

Let p, q be the distributions of measuring |ϕ⟩, |ψ⟩ respectively. Then, we have that (twice)
their total variation distance is

∑

x

|α2
x − β2x| =

∑

x

(βx − αx)(βx + αx)

=
∑

x

γx(γx + 2αx)

≤
∑

x

γ2x + 2|γxαx| (triangle inequality)

≤ ∥γ∥22 + 2∥γ∥2∥α∥2 (Cauchy–Schwarz)

≤ ϵ2 + 2ϵ ,

which is at most 4ϵ since ϵ ≤ 2 by the triangle inequality (∥|ϕ⟩− |ψ⟩∥2 ≤ ∥|ϕ⟩∥2+∥|ψ⟩∥2 = 2).
Hence the TV distance is at most 2ϵ.

Putting everything together, we have shown that for any quantum algorithm with T
queries, there is a state we should accept and one we should reject which we can distin-
guish with probability at most 1

2 +
2T√
2n

. To correctly answer at least 2/3 of the time, this must

be at least a constant larger than 1/2, which requires T = Ω(2n/2).
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Grover’s algorithm

While a Ω(
√
2n) query lower bound for search is an unpleasant reality, notice that the situation

is not as bad as it could be—after all, the classical algorithm requires Ω(2n) queries. Can we
devise a devise a quantum algorithm that gets this quadratic improvement over the classical
algorithm? We can!

Theorem 3.6 (Grover’s algorithm). There is a O(
√
2n) time quantum algorithm for unstruc-

tured search.

It will turn out that the simplest version of Grover’s algorithm depends on the number of
marked items, that is, inputs x such that f(x) = 1. Therefore, let’s assume for now that there
is only a single marked item. We will see in the analysis that this is the “hard” case.

The entirety of Grover’s algorithm is simply alternating between the phase oracle (i.e.,
Of ) and the “Grover diffusion operator” defined as

D := 2 |u⟩⟨u| − I

where |u⟩ := H⊗n |0n⟩ is the uniform superposition.

Claim 3.7. The diffusion operator D := 2 |u⟩⟨u| − I is a unitary operation that reflects1 about
|u⟩. Furthermore, D can be constructed with linearly-many gates in log depth.

Proof. To verify that D is unitary, we can simply compute

DD† = (2 |u⟩⟨u| − I) · (2 |u⟩⟨u| − I)† = 4 |u⟩⟨u| − 2 |u⟩⟨u| − 2 |u⟩⟨u|+ I = I.

To see why D is a reflection about |u⟩, first notice that we can decompose an arbitrary state
|ψ⟩ as its component aligned with |u⟩ and its component orthogonal to |u⟩.

|ψ⟩ = α |u⟩+ β |v⟩ ,

where ⟨u|v⟩ = 0 and |α|2 + |β|2 = 1. Then, we can verify

D |ψ⟩ = α (2 (|u⟩⟨u|)− I) |u⟩+ β (2 (|u⟩⟨u|)− I) |v⟩ = α |u⟩ − β |v⟩ ,

where we use the fact that ⟨u|u⟩ = 1 and ⟨u|v⟩ = 0.
To see that D can be constructed with linearly-many gates in log depth, notice that if we

conjugate D by Hadamard, we get the reflection about the all-zeros state: D0 = 2 |0n⟩⟨0n|−I.
Therefore, we just need a circuit for D0. On the computational basis states, we have D0 |x⟩ =
(−1)x1∨···∨xn |x⟩ so we just need to be able to detect if any of the qubits are 1 (which can be
done with a linear-size, log-depth reversible circuit) and apply a phase gate depending on the
answer.

1By “reflect” about |u⟩, we mean that D flips the sign of every vector in the subspace orthogonal to |u⟩.
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Algorithm 1 Grover’s algorithm
Input: 2n unknown input bits accessed through the oracle Of .
Output: s ∈ {0, 1}n such that f(s) = 1, or null if none exists.

1: |ψ0⟩ = H⊗n |0n⟩
2: for i ∈ {1, . . . , T} do
3: |ψi⟩ ← DOf |ψ⟩i−1

4: s∗ ← measurement of |ψT ⟩
5: return s∗ if f(s∗) = 1; otherwise, null

Examining Grover’s algorithm, we see that the final state before we measure is given by

DOf · · ·DOfDOf |u⟩

To understand why this algorithm works, it will be extremely useful to take a geometric per-
spective. To start, notice that our initial state |u⟩ lies in a particular 2-dimensional subspace
that is spanned by |s⟩ (our marked item) and |Ψ⟩ = 1√

2n−1

∑
x ̸=s |x⟩ (the uniform superposi-

tion over all unmarked states):

|u⟩ = 1√
2n

∑

x

|x⟩ = 1√
2n
|s⟩+ 1√

2n

∑

x ̸=s
|x⟩ = 1√

2n
|s⟩+

√
1− 1

2n
|Ψ⟩ .

First, we make the following intriguing observation:

Observation 3.8. Each Grover iteration keeps the state in the span of |s⟩ and |Ψ⟩.

Proof. This is easy to see for the phase oracle: α |s⟩ + β |Ψ⟩ Of−−→ −α |s⟩ + β |Ψ⟩. For the
diffusion operator, we have

α |s⟩+ β |Ψ⟩ D−→ (2 |u⟩⟨u| − I)(α |s⟩+ β |Ψ⟩) = 2(α ⟨u|s⟩+ β ⟨u|Ψ⟩) |u⟩ − α |s⟩ − β |Ψ⟩

but we’ve already seen above that |u⟩ can be expressed a linear combination of |s⟩ and |Ψ⟩.

In other words, each Grover operation is a rotation in the plane spanned by |s⟩ and |Ψ⟩.
We have that Of reflects about |Ψ⟩, and the diffusion operation reflects about |u⟩:

|Ψ⟩

|s⟩

|u⟩
θ0
θ0

Of |Ψ⟩

|s⟩

Of |u⟩

θ0
2θ0

θ0

D
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If we compose the two operations (i.e., DOf ) and apply them to any arbitray state |φ⟩, we
simply get a rotation in this space of 2θ0, where θ0 is the initial angle between |u⟩ and |Ψ⟩:

|Ψ⟩

|s⟩

|φ⟩
2θ0

θ

DOf

That is, the evolution of the angle is given by θ0, 3θ0, 5θ0, . . . , (2T + 1)θ0. Notice that we
want to reach the angle π/2, so we get that we need T ≈ π/(4θ0) steps. In other words,
performance our the entire algorithm hinges on the angle θ0 between our initial state |u⟩ and
the unmarked state |Ψ⟩. We have

sin(θ0) = ⟨u|s⟩ =
1√
2n

=⇒ θ0 ≈
1√
2n

where we have used that sin(x) = x− x3

3! +
x5

5! − . . . is approximately x for small x. Therefore,
to rotate our initial state to the |s⟩ state we need T = O(

√
2n). After that many queries, we

simply measure to obtain the marked state s with high probability.
Of course, this analysis only holds if there was indeed a marked element. However, after

we’ve done this procedure, we measure to obtain to some candidate marked item s∗. We can
use one more query to our oracle to check that f(s∗) = 1. This completes the analysis of
Grover’s algorithm for a single marked element.

What happens if there are more than 1 marked items? In this case, let |s⟩ be the uniform
superposition over all marked items. If we have m marked elements, then initial angle is
⟨s|u⟩ ≈

√
m/2n at least when there aren’t too many marked items (if there are so many

marked items, we can just randomly sample until we find one). Therefore, with the same
analysis, the number of queries required to rotate our state to |s⟩ is O(

√
2n/m). When we

measure, we get a uniformly random marked item. This speedup follows our intuition that if
there are more marked elements, it should be easier to find one of them.

There is one final question to address. Namely, the above analysis only works when we
know the number marked elements. Indeed, if we continue to do more Grover iterations,
then our state continues to rotate around the unit circle. If the number of marked items is
unknown, how do we know when to stop and measure? The trick is something called “ex-
ponential search.” We make the following sequence of guesses for m: 2n, 2n−1, 2n−2, . . . , 4, 2.
Notice that if we make all n possible guesses, then we are at most a factor of 2 off from the
true answer. One can check that this does not dramatically affect the analysis. The reason
that the we search in decreasing order is because we want to obtain a speedup in the case
that there are actually many marked items. If at any point we find a marked item, then we
stop.
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Consequences of Grover’s algorithm

Consider a variant of Simon’s problem:

Collision
Function: f : {0, 1}n → {0, 1}n
Promise: f is 1-to-1 or 2-to-1
Goal: Decide which

Fact 3.9. Suppose f is 2-to-1. Then for randomly chosen A,B ⊆ {0, 1}n with |A||B| = 2n there
is a constant probability that there exists a ∈ A and b ∈ B such that f(a) = f(b).

Theorem 3.10 (Brassard, Høyer, and Tapp [BHT97]). The quantum query complexity of the
Collision problem is O(2n/3).

Proof. Pick a random A of size 2n/3 and B of size 22n/3. First query each element of A, which
takes 2n/3 queries. With this, construct the (single query) function g(x) which returns true if
there is a ∈ A with f(x) = f(a). Now run Grover’s algorithm on B, to see if g is ever true.
This takes O(

√
22n/3) = O(2n/3) queries.

3.5 Polynomial method

Let’s now look a generic technique for proving quantum query lower bounds known as the
polynomial method. To start, it will be convenient to reinterpret the meaning of a quantum
query. Namely, instead of using the oracle to apply a function, we use it to reveal a bit of a
hidden string. To be clear, these models are identical, only the language we use is different.
That is, for a function f : {0, 1}n → {0, 1}, we consider the (exponentially long) bit string
defined by all its outputs: x = x1x2 . . . x2n where xi is the ith output of f when the inputs are
ordered in binary. The input to the oracle is now an index into this string of length N := 2n.

Using this language, we will show that the acceptance probability of every quantum query
algorithm can be viewed as a polynomial in the xi variables. To start, recall the generic form
of a quantum query algorithm:

UtOxUt−1 · · ·OxU1OxU0 |0n⟩ .
which alternates between unitary operations and the phase oracle for the hidden bitstring x
(once again, we’ve hidden the ancilla register for clarity). Let’s start by looking at the affect
of the first unitary and oracle call:

|0⟩ U0−→
N∑

i=1

αi |i⟩ Ox−−→
N∑

i=1

(−1)xiαi |i⟩ .

Our first observation is that for xi ∈ {0, 1} we can rewrite (−1)xi as 1 − 2xi, so the state
becomes

N∑

i=1

(1− 2xi)αi |i⟩ .

Repeating this argument for each query, we arrive at one of the central ideas for the polyno-
mial method:
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Claim 3.11. After t oracle calls, the amplitude of each classical basis state is a polynomial of
degree t in the variables x1, . . . , xN .

Proof. The proof follows immediately from the following ideas we saw before: 1) applying a
phase oracle increases the degree of the polynomial by at most 1; and 2) applying any unitary
does not increase the degree.

Concretely, after t oracle calls, let’s write the state of our system as

N∑

i=1

αi(x) |i⟩ ,

where each αi(x) is a degree t polynomial in x1, . . . , xN . Let’s imagine that we use the quan-
tum algorithm to solve some decision problem where we accept if we measurement outcome
falls within some set S. The acceptance probability in that case, would be

p(x) :=
∑

i∈S
|αi(x)|2.

Notice that each |αi(x)|2 is a polynomial of degree 2t, so p(x) must also be a polynomial of
degree 2t.

The central idea behind the polynomial method is that low-degree polynomials are “well-
behaved” in many respects. If we’re trying to devise a quantum algorithm that is solving a
complex problem, but the acceptance probability of the algorithm is given by a low-degree
polynomial, the polynomial might not be expressive enough to capture the complexity of the
problem.

Grover lower bound via the polynomial method

Let’s use the polynomial method to tackle the unstructured search problem. We’ll focus on
the decision variant where we’d like to know if our hidden bitstring x1 · · ·xN contains a 1.
This variant is sometimes called “OR” since we’re trying to determine if x1 ∨ x2 ∨ · · · ∨ xN is
satisfied.

Our first key observation will be that the OR problem is symmetric: no matter what per-
mutation we apply to the string x, the answer to “does there exist a 1 in the string?” should
not change. This will allow us to create a symmetric polynomial that captures the acceptance
probability of the quantum algorithm.

Specifically, let p(x) be the degree 2t polynomial for the acceptance probability of a t-query
quantum algorithm for the OR problem. Define q(x) to be the polynomial which averages the
p(x) polynomials after applying a permutation:

q(x) :=
1

N !

∑

π∈SN

p(π · x)

where we denote by π · x as the result of applying the permutation to the bit string x, i.e.,
π · (x1 · · ·xN ) = xπ−1(1) · · ·xπ−1(N). By our previous observation (the problem’s answer is
invariant under permutation of the input string), q(x) should also be at least the acceptance
probability of the algorithm. Furthermore, q(x) is now symmetric.
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To be clear, q(x) is a multivariate polynomial in x1, . . . , xN . However, we now claim that
because q(x) is symmetric it can be written as a univariate polynomial r(z) of the same degree
where z =

∑N
i=1 xi.

To show this, we will use the following fact: for every symmetric polynomial over Boolean
variables, the coefficients of all terms of the same degree are equal. To prove this, simply
take the smallest degree for which this is not true and consider the two terms with different
coefficients. Setting the variables to be all 1’s in one term and the rest 0’s gives a different
result from setting the variables to be all 1’s in the other term and the rest 0’s. Since both
terms have the same number of variables, this is a contradiction because the function was
supposed to be symmetric.

Let βi be the coefficient of any term in q(x) which has degree i. Notice that our new
variable z =

∑N
i=1 xi counts the number of variables which are 1. Therefore, using the above

argument, we can write

q(x) =

deg q∑

i=0

βi

(
z

i

)
=

deg q∑

i=0

βi
z(z − 1) · · · (z − i+ 1)

i!
= r(z)

as the expression that counts how many terms in the original expansion of q(x) had the same
degree.

Let’s return to our specific problem. To summarize, we have a polynomial r(z) of degree
2t which captures the acceptance probability of the quantum algorithm after t queries. If
the quantum algorithm were perfect (i.e., had no error), then r(0) = 0 and r(z) = 1 for all
z ̸= 0. Since the quantum algorithm can err with probability at most 1/3, the acceptance
probabilities must have values in the following ranges:

0 1 2 ... N
0

0.33

0.67

1

To be clear, the polynomial r(z) can do whatever it likes on non-integer points, but on the
values 0, 1, . . . , N , it must fall within the specified ranges. We now want to show that any
polynomial which has that behavior must necessarily have relatively high degree. Specifically,
we can apply the Markov brothers’ inequality:

Theorem 3.12 (Markov brothers’ inequality). If p(x) is a polynomial, then

max |p′(x)| ≤
∣∣∣∣
max p(x)−min p(x)

N

∣∣∣∣ (deg p)2,
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where the max and min values are for 0 ≤ x ≤ N and p′(x) denotes the first derivative.

Theorem 3.13. If r(z) as above has the desired properties, then t = Ω(
√
N).

Proof. Plugging in r to the Markov brothers’ inequality and rearranging and weakening slightly
gives us

N

4t2

(
max

0≤z≤N
|r′(z)|

)
≤ max

0≤z≤N
r(z)

Let M = max0≤z≤N r(z), and pick z0 with r(z0) = M (we can do so since [0, N ] is com-
pact). Let’s analyze two possible cases:

M < 2: Note this is the “most likely” case, since we don’t expect our function to go skyrock-
eting. In order to have r(0) ≤ 1/3 and r(1) ≥ 2/3, by the mean value theorem there must be
some z ∈ [0, 1] with r′(z) ≥ 1/3. Plugging this into the brothers’ inequality, we get

N

12t2
≤ N

4t2
max |r′(z)| ≤ max r(z) < 2

so in this case we know that t = Ω(
√
N).

M ≥ 2: In this case, the mean value theorem implies that |r′(c)| ≥ 2(M − 1) for some
c ∈ [⌊z0⌋, ⌈z0⌉], since r must return down to at most 1 for each integer, and the closest integer
is at most 1/2 away. We get 2N(M − 1) ≤M(2t)2, so

N

2t2
≤ M

M − 1
≤ 2

and hence again we know that t = Ω(
√
N).

Combining everything together, we get a new proof of Theorem 3.4 using the polynomial
method:

Proof of Theorem 3.4: Any quantum query algorithm that approximates OR with t queries
gives rise to a polynomial r of degree 2t. By Theorem 3.13, any such polynomial must have
degree Ω(

√
N). Hence, the total number of queries must be Ω(

√
N).

Observation 3.14. Suppose we want to construct a quantum algorithm for OR that has perfect
accuracy. That is, r(z) = 1 for z = 1, 2, . . . N . The fundamental theorem of algebra requires a
polynomial of deg r ≥ N , so we need at least N/2 queries.

Complexity of Parity

Considering the following simple problem:

Parity
Hidden string: x1 · · ·xN ∈ {0, 1}N
Goal: Compute x1 ⊕ · · · ⊕ xN

First, notice that we can use Deutsch’s algorithm to compute parity with N/2 queries.
To see this, first notice Deutsch algorithm can compute xj ⊕ xj for any pair of bits—in the
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“constant” case, xi = xj which implies xi ⊕ xj = 0; in the “balanced” case, xi ̸= xj which
implies xi⊕xj = 1. Pairing up all the bits, we get anN/2 query bound. Somewhat surprisingly,
this is exaclty tight:

Theorem 3.15. The quantum query complexity of the parity function is precisely N/2.

Proof. The parity function is symmetric, so running the polynomial method as above again
gives us r(z) which must now have values in these ranges:

0 1 2 3 4 ... N
0

0.33

0.67

1

In particular, r(z) = 1/2 at N distinct values, one each between i and i+ 1 for 0 ≤ i < N .
Thus by the fundamental theorem of algebra, deg r ≥ N . Since the degree of r is at most
twice the number of queries, we must have made at least N/2 queries.

3.6 Adversary method

Perhaps the simplest way to prove query lower bounds is through a powerful technique called
the “adversary method”. It is a general technique that can apply to all decision problems
P : {0, 1}N → {0, 1}, where P(x) indicates whether or not the hidden bitstring x is part of the
language.

For example, for the OR language, P(x) = 1 iff x contains a 1.

Theorem 3.16 (Ambainis Adversary Method [Amb00]). Suppose P : {0, 1}N → {0, 1}. Let
X ⊆ {0, 1}N be a subset of 0-inputs and let Y ⊆ {0, 1}N be a set of 1-inputs—that is, P(x) = 0
for all x ∈ X; and P(y) = 1 for all y ∈ Y . Let R ⊆ X × Y be any relation over the sets X and
Y satisfying the following conditions:

1. For every x ∈ X, there are at least m0 inputs y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there are at least m1 inputs x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, . . . , N}, there are at most s0 inputs y ∈ Y with (x, y) ∈ R
and xi ̸= yi.

4. For every y ∈ Y and i ∈ {1, . . . , N}, there are at most s1 inputs x ∈ X with (x, y) ∈ R
and xi ̸= yi.
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The quantum query complexity of P is Ω
(√

m0m1
s0s1

)
.

Once again, let’s use this to prove a lower bound for OR.

Proof of Theorem 3.4: Let X = {0N} be the set that only contains the all-zeros string and
Y = {x : |x| = 1} be the set containing those strings with exactly one 1. We also letR = X×Y
be all pairs of strings in X and Y . We have that, m0 = N , m1 = 1, s0 = 1, s1 = 1, so the
query complexity is Ω(

√
N).

Query lower bounds via reduction

Let’s define a promise-free variant of the Collision problem:

Element Distinctness
Function: f : {0, 1}n → {0, 1}n
Goal: Determine if there are distinct inputs x, y ∈ {0, 1}n such that f(x) = f(y)

Recall that for the Collision problem, the goal was to find a collision when we were
promised that f was either 2-to-1 or 1-to-1. For Element Distinctness, we no longer have
that promise. Indeed, f could very close to a 1-to-1 function, and yet there could still be
inputs which collide. Element Distinctness is clearly a harder problem than Collision, but...
how much harder?

It turns out that proving a quantum query lower bound from scratch for Element Distinct-
ness is quite challenging, but suppose we knew the following lower bound for the Collision
problem:

Theorem 3.17 ([Shi02]). The quantum query complexity of Collision is Ω(2n/3).

Our goal will be to reduce the Collision problem to the Element Distinctness problem, so
that an efficient query algorithm for Element Distinctness implies an efficient query algorithm
for Collision.

Theorem 3.18. The quantum query complexity of Element Distinctness is Ω(22n/3).

Proof. Suppose there is a quantum query algorithm for Element Distinctness with o(22n/3)
queries. We claim that this implies a quantum query algorithm for Collision with o(2n/3)
queries, contradicting the lower bound of Theorem 3.17.

Therefore, suppose we have some instance f of Collison. Sample a random subset R ⊂
{0, 1}n of size |R| = 2n/2. By the Birthday Paradox (see Fact 3.9), with high probability,
there exists x, y ∈ R such that f(x) = f(y) if f is 2-to-1. Now run the Element Distinctness
algorithm with f restricted to the subset R to determine whether a collision exists. The query
complexity of the algorithm is then o((2n/2)2/3) = o(2n/3). We conclude that any quantum
query algorithm for Element Distinctness must make Ω(2

2n
3 ) oracle queries.



Chapter 4

Complexity of Clifford circuits

Clifford operations are just those unitaries constructed from circuits of CNOT, Hadamard,
and Phase gates. As we’ve seen throughout these notes, the Clifford gates have appeared in
many quantum algorithms. As we will soon see, this is not just a coincidence. The Clifford
gates have some extremely nice properties. Perhaps too nice! In fact, Clifford circuits can be
efficiently simulated on a classical computer. Nevertheless, we will eventually see that this is
not the end of the story. Clifford circuits show a surprising advantage over classical circuits
when the comparison point is the depth of the circuit.

4.1 Clifford circuits, the gate definition

Let’s start by defining Clifford circuits in the simplest possible way, by the list of gates that
comprise them—controlled-not (CNOT), Hadamard (H), and Phase (S). The set of all uni-
taries that arise from Clifford circuits is called the Clifford group. A Clifford state or a stabilizer
state is obtained by applying a Clifford circuit to the all-zeros state.

To recap, the fundamental Clifford gates are

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 H =

1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
.

One way to start to understand the power and limitations of Clifford circuits is just to
play around with them, applying variations to see what kinds of states you can create. One
thing you will notice is that you get a discrete set of gates, and with a bit more mathematics,
you can give an exact characterization of what these states look like. This will be our first
approach to proving the famous Gottesman-Knill theorem:

Theorem 4.1 (Gottesman–Knill [Got98]). There is a classical polynomial-time algorithm to
sample from the output distribution of any Clifford circuit.

As previously mentioned, our plan to prove this theorem will be keep track of the state
vector of the quantum state as we apply each Clifford gate in the circuit. Of course, we
can’t write out the entire state vector, as this would require exponential space. It turns out,
however, that Clifford states have the following special form:

48
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Lemma 4.2. [DM03, VDN10] Every n-qubit Clifford state can be written as

|ψ⟩ = 1√
|A|

∑

x∈A
(−1)q(x)iℓ(x) |x⟩

where

• A is an affine space: A = {My + b (mod 2) | y ∈ {0, 1}r} for M ∈ {0, 1}n×r and
b ∈ {0, 1}n.

• q(x) is a quadratic form: q(x) =
∑

i<j qijxixj with qij ∈ {0, 1}.

• ℓ(x) is a linear form: ℓ(x) =
∑

i ℓixi with ℓi ∈ {0, 1, 2, 3}.

The natural proof of this statement also gives a classical simulation algorithm. That is,
starting with the all-zeroes state (which is trivially of the above form), show how it evolves
under the application of each one of the fundamental Clifford operations. Since each update
to the state takes polynomial time, the entire computation will take polynomial time. By
induction, we need to understand the following cases:

• Apply S on qubit i:

S |ψ⟩ = 1√
|A|

∑

x∈A
(−1)q(x)iℓ(x)S |x⟩ = 1√

|A|
∑

x∈A
(−1)q(x)iℓ(x)ixi |x⟩

In other words, if we let ℓ′(x) = l(x) + xi (mod 4), then we have an updated represen-
tation of the state with Affine space A, quadratic form q(x), and linear form ℓ′(x).

• Apply CNOT from qubit i to qubit j:

CNOT |ψ⟩ = 1√
|A|

∑

x∈A
(−1)q(x)iℓ(x)CNOT |x⟩ = 1√

|A|
∑

x∈A
(−1)q(x)iℓ(x) |CNOTx⟩

where the last equation reflects the fact that CNOT can be identified with an n × n
Boolean matrix which XOR’s the ith bit into the jth bit of the n-bit vector x. Therefore,
we now have

– Affine space: A′ = {M ′y + b′ | ∀y ∈ {0, 1}n for M ′ = CNOTM and b′ = CNOTb.

– Quadratic form: Notice that we can write q(x) = xTQx for some upper triangu-
lar matrix Q. Therefore, the updated quadratic form can be written as q′(x) =
q(CNOTx) = xTQ′x with Q′ = CNOTT ·Q · CNOT.

– Linear form: Similar to above, we can write ℓ(x) = ℓTx for the vector ℓ = (ℓ1, . . . , ℓn).
Therefore, the updated linear form can be written as ℓ′(x) = ℓ(CNOTx) = (ℓ′)Tx
where (ℓ′)T = ℓTCNOT.

• Apply H: The proof for applying H is nontrivial, so we leave it for now. See proof in
[VDN10].

In conclusion every Clifford state |ψ⟩ can be written of the form in Lemma 4.2. Furthermore,
the inductive proof reveals a polynomial-time algorithm to compute A, ℓ, q of a state given
the sequence of Clifford gates that construct the state.
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4.2 Clifford circuits, the stabilizer picture

In the stabilizer picture of simulation [Got98], we do not represent a quantum state by its
state vector, but rather as a list of “stabilizers” of the state, i.e., unitary matrices for which
the original state vector is an eigenvector. It will turn out that this is a particularly useful
representation for states generated by a Clifford circuits. Before we do this, however, let us
describe a important subgroup of the Clifford group called the Pauli group that will be the
basis of this representation.

Pauli Group

The single-qubit Pauli group is generated by Pauli matrices, which are:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

The Pauli matrices also have a bunch of nice properties (I is the 2× 2 identity matrix):

• Hermitian: X = X†, Y = Y †, Z = Z†

• Square to the identity: X2 = Y 2 = Z2 = I

• Traceless: Tr(X) = Tr(Y ) = Tr(Z) = 0

• Same determinant: det(X) = det(Y ) = det(Z) = −1

• Anticommutation: XY = −Y X, XZ = −ZX, Y Z = −ZY

• Cyclic structure:
XY = iZ Y Z = iX ZX = iY
Y X = −iZ ZY = −iX XZ = −iY

These Pauli matrices form a group P1 of order 16 under matrix multiplication, where each
element is of the form αP with α ∈ {±1,±i} and P ∈ {I,X, Y, Z}. More generally, each
element of the n-qubit Pauli group Pn is of the form αP1 ⊗ P2 ⊗ · · · ⊗ Pn where α ∈ {±1,±i}
and Pi ∈ {I,X, Y, Z}.

Although |Pn| = 4 · 4n, Pn is generated by just 2n elements: Pauli elements with a single
Z and Pauli elements with a single X. For example, on 3-qubits, the generators are

Z-elements X-elements
Z ⊗ I ⊗ I
I ⊗Z ⊗ I
I ⊗ I ⊗Z

X ⊗ I ⊗ I
I ⊗X ⊗ I
I ⊗ I ⊗X

and using the multiplication properties of the Pauli matrices, one can check that these do
indeed generate the entire group.

We will often refer to the Pauli elements without the phase as the n-qubit Pauli matrices. In
fact, the n-qubit Pauli matrices are particularly nice because they form a basis for all complex
matrices:

Fact 4.3. The n-qubit Pauli matrices form a basis for all complex 2n × 2n matrices.
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Proof. Treat each 2n × 2n matrix A as a vector of length 4n denoted by vec(A). Then, we can
express inner products between matrices A and B as vec(A) · vec(B) = Tr(AB†).

We now claim that all 4n Pauli matrices are linearly independent. To see this, let P =
P1 ⊗ · · · ⊗ Pn and Q = Q1 ⊗ · · · ⊗Qn be two distinct n-qubit Pauli matrices. We have that

Tr(PQ) = Tr(P1Q1 ⊗ · · · ⊗ PnQn) = Tr(P1Q1) · · ·Tr(PnQn) = 0

since there must exist at least some index i for which Pi ̸= Qi. In more detail, notice that
when Pi ̸= Qi for Pi, Qi ∈ {I,X, Y, Z} that PiQi = αR for α ∈ {±1,±i} and R ∈ {X,Y, Z}.
Therefore, Tr(PiQi) = αTr(R) = 0 since the Pauli matrices are traceless.

Since we have a space of dimension 4n and all 4n Pauli matrices are linearly independent,
we must have that the span of the Pauli matrices is the entire space.

As a special case, we can look at the Pauli decomposition for density matrices of pure
states.

Fact 4.4. Let |ψ⟩ be an n-qubit pure state. The density matrix |ψ⟩⟨ψ| = ∑
P∈{I,X,Y,Z}⊗n αPP

with αP ∈ R and
∑

P α
2
P = 2−n.

Proof. By Fact 4.3, we can write |ψ⟩⟨ψ| = ∑
P αPP where P ∈ {I,X, Y, Z}⊗n and αP ∈ C.

Since the Pauli matrices are Hermitian, we have

|ψ⟩⟨ψ| =
∑

P

αPP =
∑

P

α∗
PP.

This implies that αP = α∗
P since the P are linearly independent, which in turn implies that

the αP coefficients are real. Furthermore, using the purity of |ψ⟩ we have

1 = Tr(|ψ⟩⟨ψ|) = Tr(|ψ⟩⟨ψ| · |ψ⟩⟨ψ|) =
∑

P,Q

αPαQTr(PQ) =
∑

P

α2
P Tr(I⊗n) = 2n

∑

P

α2
P

where we’ve used that Tr(PQ) = 0 for P ̸= Q, P 2 = I⊗n, and Tr(I⊗n) = 2n.

Pauli matrices and stabilizer groups

Now that we have defined the Pauli group, let’s use it to help us represent a quantum state.

Definition 4.5. For n-qubit state |ψ⟩, we say unitary U stabilizes |ψ⟩ iff U |ψ⟩ = |ψ⟩. Let the
stabilizer group Stab(|ψ⟩) ⊆ Pn be the set of all Pauli elements that stabilize |ψ⟩.

Fact 4.6. Stab(|ψ⟩) is an Abelian group under matrix multiplication.

Proof. If Pauli elements P and Q both stabilize |ψ⟩, then so do PQ and P †.
To argue that this group must be Abelian, notice that any two Pauli’s P and Q either

commute (PQ = QP ) or anti-commute (PQ = −QP ). Suppose that P and Q anti-commute.
We get the following contradiction:

|ψ⟩ = PQ |ψ⟩ = −QP |ψ⟩ = − |ψ⟩ .

Therefore, P and Q must commute, and the stabilizer group is Abelian.
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Does the stabilizer group constitute a reasonable representation state? By a counting
argument, one can see that there exist many quantum states whose stabilizer groups are
empty, so this stabilizer representation won’t be very good for them. On the other hand, if the
stabilizer group is large enough, then it is a unique representation of the state:

Fact 4.7. For any stabilizer group of size 2n, there is only one state (up to global phase) with
that stabilizer group. Additionally, for any stabilizer state |ψ⟩, we have

|ψ⟩⟨ψ| = 1

2n

∑

P∈Stab(|ψ⟩)
P.

Proof. Let |ψ⟩ be an n-qubit state with |Stab(|ψ⟩)| = 2n. Let |φ⟩⟨φ| be the density matrix of
any state stabilized by every element in Stab(|ψ⟩). We claim that this density matrix is unique.
To see this, first expand |φ⟩⟨φ| in the Pauli basis using Fact 4.4: |φ⟩⟨φ| =∑P αPP . Now take
any Q ∈ Stab(|ψ⟩). We have

1 = Tr(|φ⟩⟨φ|) = Tr(Q |φ⟩⟨φ|) =
∑

P

αP Tr(QP ) = αQTr(I⊗n) =
αQ
2n

where we have used (in order) that Q stabilizes |φ⟩, that Tr(QP ) = 0 for Q ̸= P , and that
Q2 = I⊗n for any Pauli. In other words, for each of the 2n stabilizers in Stab(|ψ⟩), the
corresponding coefficient in the Pauli expansion is 2−n. Notice that this implies all other Pauli
coefficients must be zero since by Fact 4.4 we have

2−n =
∑

P

α2
P =

∑

Q∈Stab(|ψ⟩)
α2
Q +

∑

P ̸∈Stab(|ψ⟩)
α2
P = 2−n +

∑

P ̸∈Stab(|ψ⟩)
α2
P .

Since the αP coefficients are real, their squares must be non-negative. On the other hand, the
above equation implies that

∑
P ̸∈Stab(|ψ⟩) α

2
P = 0, so they must all be zero.

Because of this, let’s focus our attention on states that have stabilizer groups of size 2n.
This raises the obvious question: which states have these large stabilizer groups? Well, to
start, notice that the all-zeroes state is stabilized by every Pauli matrix which is a tensor
product of identity matrices (I) and Pauli-Z matrices. There are 2n such matrices, so they
comprise the entire stabilizer group.

We now have a stabilizer representation of our initial state. A reasonable requirement is
that we can determine how the stabilizer group changes when we apply a unitary to the state:

Fact 4.8. U stabilizes |ψ⟩ iff V UV † stabilizes V |ψ⟩.

Proof. |ψ⟩ = U |ψ⟩ ⇐⇒ V |ψ⟩ = V U |ψ⟩ = (V UV †)V |ψ⟩

In other words, if we apply a gate to our state, then we can update the stabilizer group
representation by conjugating every stabilizer by the gate. In general, we don’t have any
guarantee on the form of V UV †. That is, even if U is a Pauli matrix, it’s conjugation under an
arbitrary unitary might not be Pauli.

We are now ready to reveal the key feature of Clifford circuits:
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Theorem 4.9. The Clifford group is the normalizer of the Pauli group. That is, a unitary U is
Clifford iff UPU † is in the Pauli group for all Pauli matrices P .

For now, we just describe the direction which is important Clifford circuit simulation: if U
is Clifford, then UPU † is in the Pauli group. To make our lives easier, we will simplify down
to just a few special cases that we have to check:

• Only have to check CNOT, H, and S: Since U is Clifford, we can write U = g1 · · · gm as
a product of CNOT, H, and S gates. Therefore, if each gate gi maps Pauli elements to
Pauli elements under conjugation, then we have

UPU † = g1 · · · gm−1(gmPg
†
m)g

†
m−1 · · · g1 = g1 · · · gm−2(gm−1P

′g†m−1)g
†
m−2 · · · g1 = . . .

is another Pauli matrix.

• Only have to check generators of the Pauli group: Recall that every n-qubit Pauli P can be
expressed as the product of 2n different generators, which consist of the Pauli elements
with a single Z term and a single X term. Therefore, if we specify how a unitary
affects each such generator under conjugation, then we can determine its more general
behavior. Namely, if P = P1P2 · · ·Pk for Pauli generators Pi, then

UPU † = UP1P2 · · ·PkU † = (UP1U
†)(UP2U

†)U · · ·U †(UPkU
†)

for any unitary U .

To complete the proof, we can simply show how each of CNOT, H, and S affects the Pauli
generators:

P HPH†

X
Z

Z
X

P SPS†

X
Z

Y
Z

P CNOTPCNOT†

X ⊗ I
I ⊗X
Z ⊗ I
I ⊗ Z

X ⊗X
I ⊗X
Z ⊗ I
Z ⊗ Z

As a direct consequence, we can simulate Clifford circuits by keeping track of the stabilizer
group and how it changes under the application of each gate in the circuit.

There are two remaining issues to address in order to obtain an efficient classical simula-
tion of Clifford circuits using stabilizer groups. The first is a question of efficiency: if we need
to keep track of all 2n stabilizer elements, then our algorithm would take exponential time.
However, once again, we only need to keep track of the generators of the stabilizer group:

Fact 4.10. Let |ψ⟩ be an n-qubit Clifford state. There exists n Pauli generators g1, . . . gn ∈ Pn
such that every P ∈ Stab(|ψ⟩) can be expressed as the product of generator elements. Further-
more, the generators are independent in the sense that no generator can be expressed as the
product of the other generators.

Proof. Recall that the stabilizer group of the all-zeroes state consists of all the Z-type Pauli
elements. One can check that this group is generated by the Pauli matrices with a single Z
term: Z ⊗ I ⊗ · · · ⊗ I, I ⊗ Z ⊗ · · · ⊗ I, . . ., I ⊗ I ⊗ · · · ⊗ Z. There are n such generators, and
it is of minimal size.
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Since every Clifford state is of the form U |0n⟩ for Clifford unitary U , we have that the
stabilizer group is generated by UZiU † where Zi is the Pauli matrix with a single Z in the ith
register.

It’s worth noting that although every stabilizer group can be represented by n generators
g1, . . . , gn, this representation is far from unique. In particular, one can check that multiplying
the first generator into the second yields a new set of generators g1, g1g2, . . . , gn. In some
cases, this idea will allow us to simplify our set of stabilizer generators using a multiplicative
version of Gaussian elimination.

Let’s turn our attention to the final issue: how do we deal with measurements? Without
loss of generality, let’s just focus on a computational basis measurement on the first qubit.
There are two cases:

Deterministic Measurement: This occurs when the state is either |0⟩⊗|ψ′⟩ or |1⟩⊗|ψ′⟩. In other
words, measuring the state results in |0⟩ or |1⟩ with probability 1, and it doesn’t change the
state. Even though we don’t need to update our stabilizer group representation, there are still
two potential issues: how do we determine if the measurement will be deterministic? and
how can we determine the outcome of the measurement?

For the first problem, notice that there cannot be any Pauli stabilizers of the form X ⊗ P
or Y ⊗ P for P ∈ Pn−1 because both stabilizers would flip the first qubit. We claim that if
these stabilizers are not present, then the measurement will be deterministic. To see this,
notice that a computational basis measurement projects the first qubit onto |0⟩ or |1⟩. We can
express this projection as |0⟩⟨0| = (I + Z)/2 and |1⟩⟨1| = (I − Z)/2, respectively. Notice,
however that if g stabilizes |ψ⟩ and it is of the form I ⊗ P or Z ⊗ P , then it still stabilizes the
state after projection:

g

(
I ± Z
2
⊗ I ⊗ · · · ⊗ I

)
|ψ⟩ =

(
I ± Z
2
⊗ I ⊗ · · · ⊗ I

)
g |ψ⟩ =

(
I ± Z
2
⊗ I ⊗ · · · ⊗ I

)
|ψ⟩ .

Since the stabilizer group has not changed and the stabilizer group is unique (Fact 4.7), the
measurement must have been deterministic.

In summary, we can now easily detect whether or not the measurement will be determin-
istic by checking if all of the stabilizer generators start with either an I or a Z. To determine
the result of the measurement, we must now learn whether or not the state is of the form
|0⟩ ⊗ |ψ′⟩ or |1⟩ ⊗ |ψ′⟩. Notice that the first state is stabilized by Z ⊗ I ⊗ · · · ⊗ I, while the
second state is stabilized by −Z ⊗ I ⊗ · · · ⊗ I. We simply need to decide which. We can find
it using Gaussian elimination in time O(n3).

Random Measurement: Since the measurement is not deterministic, there must exist some
stabilizer generator that starts with either an X or a Y . Using Lemma 4.2, one can check that
the measurement result is either |0⟩ or |1⟩ with 50% probability. Therefore, it is easy to output
the result of the measurement. The difficulty is in updating the stabilizer representation.

Once again, the stabilizers that start with I or Z remain in the stabilizer group because
they still stabilize the state after projection. On the other hand, we do need to remove the
stabilizers which start with X or Y because they anti-commute with the projection. There
is a fairly nice way of doing this: take one of the stabilizer generators that starts with an X
or Y and multiply it into all of the remaining stabilizer generators that start with an X or
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Y . One can check that now all the stabilizer generators start with either an I or Z except
for one. Now, remove the remaining stabilizer generator that starts with an X or Y . What’s
left are n − 1 stabilizer generators, so we only need to add one more. If the measurement
outcome was |0⟩, add the stabilizer generator Z⊗I⊗· · ·⊗I and if it was |1⟩ add the stabilizer
generator −Z ⊗ I ⊗ · · · ⊗ I. This completes the measurement protocol. It takes time O(n2).

4.3 Clifford circuits in ⊕L
The Gottesman-Knill Theorem (Theorem 4.1) says that Clifford circuits can be simulated in
polynomial time. As it turns out, however, this is not the tightest classical characterization
of the computational power of Clifford circuits. That is, one might hope that even smaller
classical classes contain the languages computable by Clifford circuits, perhaps ones with low
space or shallow circuits. The true answer is that Clifford circuits are captured by a rather
strange class called ⊕L (pronounced “parity L”).

Let’s start with perhaps the most straightforward definition that makes explicit reference
to the “parity” in ⊕L.

⊕L: Languages K such that there exists a deterministic log-space Turing machine M and
polynomial q such that for all x ∈ {0, 1}n

• If x ∈ K, then M(x, y) = 1 for an odd number of y ∈ {0, 1}q(n).

• If x /∈ K, then M(x, y) = 1 for an even number of y ∈ {0, 1}q(n).

There is, however, a more useful characterization. Namely, ⊕L contains those languages
that are log-space reducible to solving polynomize-size CNOT circuits. What kinds of prob-
lems can be solved by CNOT circuits of polynomial size? It turns out that most linear algebra
problems over F2 fall into this category. For example, computing the determinant or inverse
of a matrix over F2 are ⊕L-complete problems [Dam90].

We will show that Clifford circuits fall into this same category of ⊕L-complete problems.
Or, in other words, the Hadamard and Phase gates in the definition of a Clifford circuit don’t
confer any additional computational powers to Clifford circuits. The CNOT gates alone are
sufficient. To do this, let’s first fix what we mean by a Clifford circuit problem: given a Clifford
circuit (say, as an explicit list of gates), decide if measuring the first qubit will be |1⟩with 100%
probability.

Before we show that this Clifford circuit problem is ⊕L-complete, let’s first get some in-
tuition about where the linear alegbra over F2 is hidden in Clifford circuits. The first idea is
that we can associate every Pauli operator with two bits:

I ↔ 00 X ↔ 10 Y ↔ 11 Z ↔ 01

If we were to ignore the issue of signs, we can see that multiplying two Pauli operators
corresponds to adding the two bit strings over F2. For example, the fact that P 2 = I for all
Pauli operators P corresponds to the fact that x⊕x = 0 for all bit strings x ∈ {0, 1}2. Similarly,
multiplying any Pauli P by the identity yields P in the same way that x ⊕ 00 = x. Finally,
we have that multiplying any two non-identity Paulis yields the third Pauli (up to sign), and
indeed we see the same behavior for the bit strings.
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What we have essentially just shown is that every Pauli P can be written as αXxZz where
α ∈ C is some phase and xz ∈ {0, 1}2 is the bit representation of the Pauli. Of course, this
idea readily generalizes to Pauli strings P = P1 ⊗ · · · ⊗ Pn where we can write P = αXxZz

for some bit strings x ∈ {0, 1}n and z ∈ {0, 1}n. Here, we have used Xx as a shorthand for
Xx1 ⊗ · · · ⊗Xxn , and similarly for Zz. Once again, the important fact is that multiplying any
two Pauli operators simply corresponds to adding their respective x and z bitstrings over F2.

We’ve arrived at a nice fact: since the stabilizers of a Clifford state form a group (under
multiplication), the bit string representations of the stabilizers form a linear subspace (under
additition mod 2) of {0, 1}2n. This bit representation of the stabilizer group is so nice that it’s
often given its own named data structure called a tableau. Specifically, let |ψ⟩ be a stabilizer
state with generators P1 ∝ Xx1Zz1 , . . . , Pn ∝ XxnZzn (once again, let’s drop the phases).
The tableau is written so that each row of the tableau corresponds to a generator:

X-part Z-part


x1 z1
...

...
xn zn


 =




x11 . . . x1n z1n . . . z1n
...

. . .
...

...
. . .

...
xn1 . . . xnn znn . . . znn


 ∈ {0, 1}n×2n

Many operations that you might want to peform on a stabilizer state now correspond to linear
algebraic operations over the tableau. As one example, recall that the Hadamard operations
flips the X and Z stabilizers under conjugation. So, applying a Hadamard gate to your
stabilizer state corresponds to swapping with ith column of the X matrix with the ith column
of the Z matrix.

We’re now ready to show how to efficiently solve Clifford problems.

Theorem 4.11. The Clifford circuit problem is ⊕L-complete.

Proof. Since Clifford circuits are a generalization of CNOT circuits, the Clifford circuit prob-
lem is certainly ⊕L-hard. So, our focus will be on showing that the Clifford circuit problem
is in ⊕L. We will use the fact that it suffices to show that the Clifford circuit problem can be
solved by log-space (i.e., L) machines with access to a ⊕L oracle [HRV00]. That is, the goal
will be to simulate a Clifford circuit using a logspace machine with access to an oracle that
can solve linear algebra problems over F2.

To start, note that we can compute any bit of the tableau by essentially running the entire
Clifford simulation algorithm. That is, for any specific bit of the tableau, ask the oracle
“What is this bit of the tableau after applying the sequence of linear algebraic manipulations
corresponding to each of the gates in the input”. Since we can enumerate over all gates in the
input with logarithmic memory, this takes at most logarithmic memory.

Notice that we have ignored the sign bits of the Pauli operators. To keep track of the sign
bit, the claim is that we can simply re-run the entire simulation algorithm computing 1 bit of
the tableau at a time. Whenever we update the tableau with a gate that would have flipped
the sign of the Pauli, we keep track of this change. Since we’re only ever storing a pointer
to where we are in the computation and a single bit about the sign, this can be done in log
space.

Let’s suppose the tableau after measurement is
(
A B

)
for matrices A,B ∈ {0, 1}n×n.

The measurement will be deterministic if there exists a solution s ∈ {0, 1}n such that sA = 0n

and sB = 10n−1. However, this is once again a linear alebra question we can ask the oracle.
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That is, the bits of s that are equal to 1 indicate which stabilizer generators we should multiply
together to get the Pauli ±Z ⊗ I ⊗ · · · ⊗ I. Once we have the solution, all that remains is to
check what sign the stabilizer generator has. Notice however that we can compute the sign
of a product of generators in log space by first computing the sign of the first Pauli in each
product, then the second Pauli and so on.

4.4 Constant-depth circuits

Let’s step back a bit and consider where Clifford circuits sit in the hiearchy of complexity
classes. It is widely considered that ⊕L is strictly contained in P. That is, Clifford circuits
seem like a really poor example to showcase the power of quantum computation. They aren’t
even universal for classical computation.

However, this is not quite the end of story. There are certainly weaker complexity classes
than ⊕L, and it is upon these smaller classes that our quantum advantage claims will rest.
Let’s take a moment to introduce these shallow circuit classes, in both the classical and quan-
tum settings.

Nick’s class (NC0)
The class of languages L such that there exists a uniform family of constant-depth, polynomial-
size classical circuits Cn : {0, 1}n → {0, 1} built from AND, OR, and NOT gates with bounded
fanin where x ∈ L if and only if Cn(x) = 1.

Quantum NC0 (QNC0)
The class of languages L such that there exists a uniform family of constant-depth, polynomial-
size quantum circuits {Qn}∞n=1 built from 1- and 2-qubit gates such that for all x ∈ {0, 1}

• If x ∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ |0 · · · 0⟩ is at least 2/3

• If x /∈ L, probability of measuring |1⟩ on the first qubit of Qn |x⟩ |0 · · · 0⟩ is at most 1/3

Looking at these two classes, we’re left with an intriguing question: Can we prove quan-
tum advantage with shallow circutis? That is, can we show that there is some constant-depth
quantum circuit (i.e., in QNC0) that can solve a decision problem that cannot be solved by
constant-depth classical circuit (i.e., NC0)? We could even hope to get greedier, and show
that even shallow Clifford circuits can’t be simulated by any constant-depth classical circuit.
Unfortunately, and perhaps a bit surprisingly, the answer is no!

The following theorem says that as long as we’re considering decision problems, we’ll
never get quantum advantage with constant-depth circuits of this kind.

Theorem 4.12. QNC0 = NC0.

Proof. We use a light-cone argument. Suppose we have a quantum circuit Q with depth at
most a constant d, and we only measure the first qubit at the end. There is a light cone of
input qubits that could possibly affect the first output qubit, and this light cone also has depth
at most d. Then at most 2d input qubits can affect our final measurement—where 2d is another
constant. (Note that the base 2 is coming from the definition of QNC0 being based on 1- and
2-qubit gates only.) Now we can simply classically simulate the constant-size computation
over these 2d qubits.
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Therefore, if we want to have any hope of achieving quantum advantage in constant
depth, we will need to modify our question. One might at first assume that we need to add
some new types of operations to our class of quantum circuits in order to get them to be more
powerful than their classical counterpats. However, as it turns out, all that is required is a
change in perspective. When we inspect the proof of Theorem 4.12, we see that the fact that
we were only measuring a single-qubit was critical. If we were to measure all of the qubits of
the quantum circuit, there might be some correlations between the output bits that would be
hard to simulate classically. Indeed, we will see that it is exactly these kinds of multi-output
“relation” problems that are provably hard for shallow classical circuits to simulate.

To start, let’s give the formal definitions of the relation variants of NC0 and QNC0:

Relational NC0 (FNC0)
The class of relations R ⊆ {0, 1}∗×{0, 1}∗ such that there exists a uniform family of constant-
depth, polynomial-size classical circuits Cn : {0, 1}n → {0, 1}∗ built from AND, OR, and NOT
gates with bounded fanin where Cn(x) ∈ R(x) for all x ∈ {0, 1}n.

Relational QNC0 (FQNC0)
The class of relations R ⊆ {0, 1}∗×{0, 1}∗ such that there exists a uniform family of constant-
depth, polynomial-size quantum circuits {Qn}∞n=1 built from 1- and 2-qubit gates such that on
input x ∈ {0, 1}n, measuring polynomially many qubits of Qn |x⟩ |0 · · · 0⟩ results in outcome
|y⟩ with y ∈ R(x) with probability at least 2/3.

To be concrete, our new question is whether or not we can find a relation in FQNC0 that is
not in FNC0. The key to finding such a relation will be to show that classical constant-depth
circuits are hopelessly bad at simulating correlations between qubits that are “far apart” in
the quantum circuit. To formalize this story, we will use the language of quantum nonlocal
games.

4.5 Quantum nonlocal games - GHZ and Parity Halving

A nonlocal game is a game in which several noncommunicating player tried to collectively
solve some problem posed to them by a referee. Such games are easiest to get a sense of
through an example. We start with the GHZ game, which is nonlocal game with a referee
and three players. The referee sends bit a ∈ {0, 1} to Alice, b ∈ {0, 1} to Bob, and c ∈ {0, 1}
to Charlie. Alice sends back bit x ∈ {0, 1}, Bob sends back y ∈ {0, 1}, and Charlie sends
back z ∈ {0, 1}. Alice, Bob, and Charlie can agree on a strategy ahead of time but cannot
communicate during the game.
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Referee

Alice

Bob Charlie

a x

b

y

c

z

The players receive a uniformly random input with even Hamming weight (i.e., a⊕b⊕c =
0). The players win the game if the XOR of their outputs is equal to the OR of their inputs
(i.e., x ⊕ y ⊕ z = a ∨ b ∨ c). Let’s first consider the highest probability the players win the
game using a classical strategy.

Theorem 4.13. The best classical strategy for the GHZ game wins with 75% probability.

Proof. To win with 75% probability, each player can ignore their input and always just output
1. Note that the promise a ⊕ b ⊕ c = 0 means there are only four possible scenarios for the
game:

a b c a ∨ b ∨ c
0 0 0 0
1 1 0 1
0 1 1 1
1 0 1 1

Since the players receive a uniformly random row, the OR of the outputs is 1 with 75% prob-
ability. Since the XOR of their outputs will always be 1, the players win with 75% probability.

To see that the players cannot win with higher probability, let’s first consider the players
have deterministic strategies. In other words, there is some explicit function that each player
applies to their input to determine what they will output. We can write Alice’s function as
A : {0, 1} → {0, 1} and similarly for Bob (B) and Charlie (C). If the players are correct for all
four questions, then we have

A(0)⊕B(0)⊕ C(0) = 0

A(1)⊕B(1)⊕ C(0) = 1

A(0)⊕B(1)⊕ C(1) = 1

A(1)⊕B(0)⊕ C(1) = 1.

However, if we add them all these equations, we can see that all terms on the lefthand side
cancel and the sum on the righthand side is 1. Therefore, we get that 0 = 1, a contradic-
tion. Since it is impossible to correctly answer all four questions, they can at most get three
questions correct, i.e., 75% chance of winning.

If Alice, Bob, and Charlie run classical randomized algorithms, their strategy will only be
a convex combination of deterministic strategies. Concretely, suppose there are n determin-
istic strategies D1, . . . , Dn for Alice, Bob, and Charlie. If they are randomized, they execute
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strategy Di with probability pi, where
∑

i pi = 1. We have already shown that for any fixed
Di, the probability of winning is at most 75%. In the randomized setting, the probability of
winning is now

∑
i pi Pr[win on Di] ≤

∑
i pi(0.75) ≤ 0.75. Thus for all classical strategies,

deterministic or randomized, the best possible win probability is 75%.

Theorem 4.14 (Greenberger-Horne-Zeilinger [GHZ89]). There exists a quantum strategy for
the GHZ game, such that the three players win with probability 1.

Proof. The three players Alice, Bob and Charles share a three-qubit entangled state:

|GHZ⟩ = |0A0B0C⟩+ |1A1B1C⟩√
2

.

Here, we have shown the subscript on each qubit to indicate which player holds it. That is,
Alice has the first qubit, Bob has the second, and Charlie has the third. All three players use
the following strategy when they receive a bit s ∈ {0, 1} from the referee:

If s = 0: apply a Hadamard gate and measure (equivalently, measure in the X basis), and
return the outcome to the referee.

If s = 1: apply a phase gate followed by a Hadamard gate and measure (equivalently, mea-
sure in the Y basis) and return the outcome to the referee.

Notice that both the starting state and all measurement operators used in this game are
Clifford. Therefore, we can use the stabilizer group representation to analyze the strategy.

Lemma 4.15. The stabilizer group of the GHZ state is generated by {XXX,ZZI, IZZ}.

Proof. The GHZ state is generated by the following circuit:

|0⟩ H

|0⟩

|0⟩

∣∣03
〉

|ψ1⟩ |ψ2⟩ |GHZ⟩

By tracing the evolution of the stabilizer group generators we get,

ZII
IZI
IIZ

Stab(|03⟩)

H⊗I⊗I−−−−−→
XII
IZI
IIZ

Stab(|ψ1⟩)

CNOT⊗I−−−−−−→
XXI
ZZI
IIZ

Stab(|ψ2⟩)

I⊗CNOT−−−−−−→
XXX
ZZI
IZZ

Stab(|GHZ⟩)

Lemma 4.16. Let |ψ⟩ be any Clifford state whose stabilizer group contains a Pauli element that
is a tensor product of Z and I elements. That is, |ψ⟩ is stabilized by P = αP1 ⊗ · · · ⊗ Pn such
that Pi ∈ {Z, I} and α = {±1}. Measure |ψ⟩ in the computational basis, but consider only the
measurements on qubits i such that Pi = Z. If α = 1, then the parity of the measurement results
is even; otherwise (α = −1), the parity is odd.
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Proof. Let a be a bit string a ∈ {0, 1}n and P be a Pauli matrix P ∈ {X,Y, Z, I}. We will use
the notation P a to denote the n-qubit Pauli operator

P a := P a1 ⊗ · · · ⊗ P an

where P 0 = I. Using this notation and the assumption of the lemma, |ψ⟩ has a stabilizer of
the form (−1)bZz where z ∈ {0, 1}n is a bit string and b ∈ {0, 1} is the sign (i.e., (−1)bZz |ψ⟩ =
|ψ⟩). Notice also that for any x ∈ {0, 1}n, we have |x⟩ = Xx |0⟩ . This is because applying
the Pauli string Xx corresponds to applying the Pauli X operator to qubit i if xi = 1 and the
identity operator if xi = 0. Therefore, we have

⟨x|ψ⟩ = (−1)b ⟨0|XxZz |ψ⟩

By (anti-)commutativity property of Pauli strings, we have XxZz = (−1)x·z · ZzXx, which
then gives

⟨x|ψ⟩ = (−1)x·z⊕b ⟨0|ZzXx |ψ⟩ = (−1)x·z⊕b ⟨0|Xx |ψ⟩ = (−1)x·z⊕b ⟨x|ψ⟩

where we’ve used that Za is a stabilizer of the all zeros state: ⟨0|Za = ⟨0|. Notice that if we
want ⟨x|ψ⟩ to be nonzero (i.e., there is some chance to output measurement result |x⟩), we
need that x · z ⊕ b = 0; otherwise, we get that α = −α for some non-zero complex number α.
In other words, if b = 0, the parity of the measurement results on the non-identity elements
of the stabilizer must be even; and similarly, if b = 1, the parity must be odd.

Now we will perform a case analysis on the values of the inputs (a, b, c) to show that
our strategy always succeeds. We only need to consider the cases (a, b, c) ≡ (0, 0, 0) and
(a, b, c) ≡ (1, 1, 0). The cases (a, b, c) ≡ (0, 1, 1) and (a, b, c) ≡ (1, 0, 1) follow from symmetry.
In each case, we would keep track of the evolution of the stabilizer group generators and then
apply Lemma 4.16.

• (a, b, c) ≡ (0, 0, 0): All three players measure in the X basis:

|GHZ⟩
H x

H y

H z

Using Lemma 4.15 to obtain the generators of our starting state, their evolution is given
by

XXX
ZZI
IZZ

H⊗3

−−−→
ZZZ
XXI
IXX

As the stabilizer group of the state being measured contains the Pauli string ZZZ,
Lemma 4.16 states that the output must have even parity, i.e., x⊕ y ⊕ z = 0

• (a, b, c) ≡ (1, 1, 0): Alice and Bob (who received bit a and b) measure their qubits in the
Y basis. Charlie measures in the X basis. The circuit representation in this case is
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|GHZ⟩
S H x

S H y

H z

We get
XXX
ZZI
IZZ

S⊗S⊗I−−−−−→
YYX
ZZI
IZZ

H⊗H⊗H−−−−−−→
Y Y Z
XXI
IXX

Using group closure properties, −ZZZ = (Y Y Z)(XXI) is in the stabilizer group of the
state being measured. Therefore, by Lemma 4.16 the measurement output must have
odd parity, ie. x⊕ y ⊕ z⊕ = 1.

Thus, we conclude that whenever the parity of the input is even (i.e., a ⊕ b ⊕ c = 0), the
three players return bits x, y, z such that x ⊕ y ⊕ z = a ∨ b ∨ c. In other words, they always
answer correctly to the referee.

We now have a nonlocal game where the quantum strategy does provably better than the
classical strategy. However, if we think about turning the GHZ game into a quantum-classical
circuit separation, we are confronted with the fact that the game only involves a constant
number of input/output bits. Any relation with three input bits and three output bits can
trivially be solved by even a constant-depth classical circuit (i.e., in FNC0).

Our first goal will be to generalize the GHZ game so that it involves n players. We will use
the Parity Halving Game introduced in [WKST19]:

Parity Halving Game
Input: x1, . . . , xn ∈ {0, 1}
Promise: x1 ⊕ · · · ⊕ xn = 0
Goal: Output y ∈ {0, 1}n such that |y| ≡ |x|/2 (mod 2)

Notice that we can think of the Parity Halving Game as follows: if the Hamming weight of the
input is 0 mod 4, then output a string of Hamming weight 0 mod 2; if the Hamming weight
of the input is 2 mod 4, then output a string of Hamming weight 1 mod 2.

When n = 3, the Parity Halving Game is exactly the GHZ game. In fact, the quantum
strategy is identical. Each player starts with 1 qubit of the n-qubit cat state:

| n⟩ :=
|0n⟩+ |1n⟩√

2
.

Then, each player applies an phase gate if their input bit was 1. Finally, all players apply a
Hadamard gate and measure. Let’s now show that this strategy wins with 100% probability.
This will give an alternative proof of the quantum strategy for the original GHZ game.

Theorem 4.17. For m = n, there is a quantum strategy to win the Parity Halving Game with
probability 1.
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Proof. Following the quantum strategy, each player applies a phase gate to their cat qubit
when their input bit is 1. We get

|0n⟩+ |1n⟩√
2

Sx1⊗···⊗Sxn−−−−−−−−→ |0n⟩+ i|x| |1n⟩√
2

=
|0n⟩+ (−1)|x|/2 |1n⟩√

2

where the last equality uses the fact that the Hamming weight of the input is even. If the
Hamming weight of the input is 0 mod 4, then |x|/2 is even, so we get the cat state again.
However, if the Hamming weight of the input is 2 mod 4, then |x|/2 is odd, so we get the cat
state with a −1 phase on the |1n⟩ part. We now simply need to analyze the affect of applying
a layer of Hadamard gates to such states. For bit b ∈ {0, 1}, we get

|0n⟩+ (−1)b |1n⟩√
2

H⊗n

−−−→ 1√
2


 1√

2n

∑

y∈{0,1}n
|y⟩+ 1√

2n

∑

y∈{0,1}n
(−1)|y|⊕b |y⟩




=
1√
2n+1

∑

y∈{0,1}n
(1 + (−1)|y|⊕b) |y⟩

If b = 0, then we can see that all the odd strings will have 0 amplitude since 1 + (−1)|y| = 0.
Similarly, if b = 1, then all the even strings will have 0 amplitude.

Putting everything together, we see that when |x|/2 is even (i.e., the b = 0 case), we
sample a uniformly random bit string with even parity, and when |x|/2 is odd, we sample a
uniformly random bit string with odd parity. This exactly solves the Parity Halving game.

We now turn to the classical lower bound. We will see that as we increase the number of
players, the maximum winning probability decreases exponentially:

Theorem 4.18. Any classical strategy for the Parity Halving Game wins with probability at most
1
2 + 2−⌈n/2⌉.

Proof. As in the proof of Theorem 4.13 it suffices to analyze classical deterministic strategies.
Notice that on input xi ∈ {0, 1}, the ith player can has exactly 4 functions that determine the
output: 0, 1, xi, or xi ⊕ 1. In other words, if we collect the responses from all players, their
joint answer is some linear function

(a1, a2, . . . , an)⊕ (b1x1, b2x2, . . . , bnxn)

for some fixed bits a1, . . . , an, b1, . . . bn ∈ {0, 1}. Therefore, the parity of their output is given
by a⊕ b · x for a = a1⊕ · · · ⊕ an and b the n-bit string for the bi. Our goal is to determine how
well such a linear strategy can correlate with the correct strategy of the Parity Halving Game.

To capture the correct strategy, let f(x) = Re(i|x|) be the real part of i|x|. Notice that

f(x) =





1 if x ≡ 0 (mod 4)

−1 if x ≡ 2 (mod 4)

0 if x outside promise
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which indeed lines up with the intended behavior. The correlation between the correct strat-
egy and the linear strategy is given by

χ =
1

2n−1

∣∣∣∣∣∣∣∣

∑

x∈{0,1}n
s.t. |x|≡0 (mod 2)

(−1)a+b·xf(x)

∣∣∣∣∣∣∣∣

That is, χ is the fraction of inputs where the linear strategy is correct minus the fraction of
inputs where it is incorrect. One can then check that the probability of being correct is given
by (1 + χ)/2.

The first key observation is that f(x) = 0 on those inputs x falling outside the promise.
This allows us to drop the condition on the sum (that the Hamming on x ∈ {0, 1} is 0 mod 2)
and factorize the sum into a product:

2n−1χ =

∣∣∣∣∣∣
∑

x∈{0,1}n
(−1)a+b·xRe(ix)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
Re


 ∑

x∈{0,1}n
(−1)a+b·xi|x|



∣∣∣∣∣∣

=

∣∣∣∣∣∣
Re


 ∑

x∈{0,1}n
(−1)b1x1+···bnxnix1+···+xn



∣∣∣∣∣∣

=

∣∣∣∣∣∣
Re


 ∑

x1∈{0,1}
(−1)b1x1ix1


 · · ·


 ∑

xn∈{0,1}
(−1)bnxnixn



∣∣∣∣∣∣

=
∣∣∣Re(1 + i2b1+1) · · · (1 + i2bn+1)

∣∣∣

In other words, the correlation will depend on the real part of the product of n complex
numbers of the form (1± i). If we were to take out a factor of

√
2, each of these would be an

8th root of unity. Multiplying any two, we get

1 + i(−1)α√
2

· 1 + i(−1)β√
2

=
1− (−1)α+β + ((−1)α + (−1)β)i

2
=

{
±i if α = β

1 if α ̸= β

for any bits α, β ∈ {0, 1}. Therefore, if n is even, then we can pair up the elements of the
product, so the product is in the set {±1,±i} and the real part is in the set {0,±1}. Clearly,
χ is maximized in this setting when the product is non-zero. If n is odd, then we have one
leftover root of unity, so the product is in the set {±1±i√

2
} and the real part is in the set {± 1√

2
}.

We get that

χ ≤
√
2n

2n−1
·
{
1 if n is even
1√
2

if n is odd
=

1

2⌈n/2⌉−1
.

The theorem follows immediately since the probabilty of winning over a random input is
given by (1 + χ)/2.
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While this would conclude the analysis of the standard Parity Halving Game, it turns out
we will need a slightly stronger result when we try to convert this nonlocal game separation to
a circuit separation. Namely, we will consider a version of the game where k of the inputs are
fixed to some values known by all players. One can very slightly modify proof of Theorem 4.18
to see that the maximum classical winning probability is given by 1

2 + 2⌈(n−k)/2⌉.

4.6 Circuit separations from quantum nonlocal games

Notice that there is a somewhat natural correspondence between a quantum nonlocal game
with n players and a circuit with n input wires and n output wires. If each output was only
allowed to depend on a unique input, then this correspondence would be exact. Of course,
for general circuits this will not be true. For constant-depth circuits, however, we will show
that such a condition is approximately true.

Recall our goal: we want to show that there is some relation in FQNC0 that is not in
FNC0. One idea is to show that the relation coming from the Parity Halving Game suffices.
Let’s restate a slight generalization of that problem:

Parity Halving Problem (PHPn,m)
Input: x ∈ {0, 1}n such that |x| ≡ 0 (mod 2)
Output: y ∈ {0, 1}m such that |y| ≡ |x|/2 (mod 2)

Notice in particular that we’ve generalized to allow for outputs of a size m, which is not
necessarily equal to n (as would be the case for the nonlocal game). Clearly, if you can solve
the Parity Halving Problem for m = n, then you can solve it for m > n by just outputting
some extra zero bits.

Unfortunately, it is still not clear why the Parity Halving Problem should be in FQNC0. To
see this, consider the straightforward implementation of the quantum strategy for the Parity
Halving Game as a quantum circuit shown below for the n = 3 case:

|x1⟩
|x2⟩
|x3⟩

|000⟩+|111⟩√
2

S H

S H

S H

Since the controlled-phase gates can be applied in parallel, this seems like a constant-depth
circuit. However, the problem is that the quantum circuit is allowed to start with the cat state
in an ancilla register. Unfortunately, one can show that the cat state cannot be constructed by
a constant-depth circuit. To circumvent this issue, we will have to modify our definition of
the Parity Halving Problem. However, for now, let’s put this issue aside.

Let FQNC0/ be the complexity class of function problems solvable using an ancillary cat
state. By the above construction, we have that PHPn,n ∈ FQNC0/ . Let’s show that it is not
in FNC0.
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Theorem 4.19. The Parity Halving Problem PHPn,m is not in FNC0 for m = o(n2).

Proof. Suppose there is some classical NC0 circuit solving the Parity Halving Problem with
n input bits and m output bits. While it will likely be true that the circuit has outputs that
depend on multiple input bits (i.e., not satisfying the condition of a nonlocal game), the proof
idea will be to find a collection of output bits for which the input/output behavior does look
like a nonlocal game.

The starting point will be to understand which input bits affect which output bits. Recall
that NC0 circuits have bounded fanin, so every output bit is affected by at most constantly
many input bits. This is the standard “lightcone” argument we saw in Theorem 4.12. In fact,
we will use two kinds of lightcones in this proof. The lightcone of an input bit is the set of
outputs that the input bit affects, and the lightcone of an output bit is the set of input bits
that affect it. Because NC0 circuits have unbounded fanout, the size of any individual input
bit lightcone can also be unbounded. Because NC0 circuits have bounded fanin, the the size
of any output bit lightcone is bounded by a constant, say ℓ = O(1).

Notice that if we have a bound on the number of input bits that can affect an output, this
immediately gives a bound on the number of output bits that can be affected by an average
input bit. To formalize this argument, consider a bipartite graph on n +m vertices, with the
input bits on the left side and the output bits on the right side. Connect an input bit with an
output bit if that output bit depends on the input. By the lightcone argument, the degree of
each output bit is at most ℓ. Since there are m output bits and the sum of the degrees in each
bipartition must agree, the average degree of the input bits must be also be ℓm/n.

Let’s now consider yet another graph that will indicate the if the lightcone of an input bit
intersects with the lightcone of another input bit. That is, two input bits are connected in the
graph if there is an output bit which is affected by both of them. Notice that we are looking
for a large independent set in this graph. Notice that an input that has degree k in the original
graph has degree at most kℓ in the intersection graph since each output bit in the lightcone
of an input bit can itself be affected by at most ℓ inputs. Therefore, the average degree in
the intersection graph is ℓ2m/n. By Turán’s Theorem, any graph with n vertices and average
degree ℓ2m/n must have an independent set of size at least s := ⌈n2/(n+ ℓ2m)⌉.

To complete the proof, it suffices to “isolate” the input bits in the independent set by fixing
the remaining input bits to some constant values. Notice that if the original circuit suceeded
on a random input with probability p, then by an averaging argument, there must be a setting
of the other input bits so that the circuit is still correct with probability at least p on the
remaining input bits. We can now apply Theorem 4.18 and the discussion afterwards to see
that the circuit correctly computes the relation on at most a 1/2 + 2−⌈s/2⌉ fraction of inputs.
That is, if m = o(n2), the classical circuit only has an exponentially small advantage over
guessing randomly.

Separating FQNC0 from FNC0

Let’s now return to the issue of the cat state not being constructible by QNC0 circuits. We
start with a weakened definition of the cat state called the “poor man’s cat state”, that is, any
state of the form:

|z⟩+ |z⟩√
2
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where z ∈ {0, 1}n and z = (z1 ⊕ 1, . . . , zn ⊕ 1) is the complement. Of course, if we could
construct the poor man’s cat state for a particular z, then this is just as good as constructing
the cat state itself since we could apply a layer of Pauli-X gates to map it to the cat state. What
will show instead is that there is a constant-depth quantum circuit to construct a random poor
man’s cat state.

The key to understanding this construction the following nice property of any bit string
and its complement: for any z ∈ {0, 1}n, z is the unique bitstring (other than z itself) such
that the parity of any two bits of z is the same as the parity of the corresponding bits in z.
That is, for any i, j ∈ [n], we have zi ⊕ zj = zi ⊕ zj .

Let’s see why this is true. Let a, b ∈ {0, 1}n be different bit strings satisfying the parity
condition. Since a and b must be different, let’s assume without loss of generality that a starts
with a 0 and b starts with a 1. We have

a = 0 a2 a3 · · · an
b = 1 b2 b3 · · · bn

By assumption, the parity of the first two bits of a is equal to the parity of the first two bits of
b, so we get

a1 ⊕ a2 = b1 ⊕ b2 =⇒ 0⊕ a2 = 1⊕ b2 =⇒ b2 = a2 ⊕ 1

In other words, b2 is the complement of a2. Repeating the exact same argument for bits 2 and
3, we get

a2 ⊕ a3 = b2 ⊕ b3 =⇒ a2 ⊕ a3 = (a2 ⊕ 1)⊕ b3. =⇒ b3 = a3 ⊕ 1

and so b3 is the complement of a3. Repeating the argument for all n bits completes the claim.
In fact, we’ve shown something a little bit stronger. Inspecting the argument, we only need
to constrain the parity of bits that are adjacent (i.e, bits i and i+ 1).

This immediately gives rise to an idea for constructing a poor man’s cat state: prepare the
superposition over all bit strings, and then constrain the parity of all adjacent bits. Quantumly,
we can constrain the parity by first computing the parity (with a couple of CNOT gates) and
the measuring it:

|+⟩

|0⟩

|+⟩

Here, the first and third qubits are a superposition over all basis states, and the middle qubit
is the parity. Before measurement, we have

1

2

∑

x,y∈{0,1}
|x⟩ |0⟩ |y⟩ CNOT gates−−−−−−−→ 1

2

∑

x,y∈{0,1}
|x⟩ |x⊕ y⟩ |y⟩ =

( |000⟩+ |101⟩
2

)
+

( |011⟩+ |110⟩
2

)

where we have grouped the final expressions by their parity. You can see that after measure-
ment, the state remaining on the first and third qubits is

|00⟩+ |11⟩√
2

or
|01⟩+ |10⟩√

2
.
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Generalizing this construction immediately gives a poor man’s cat state. To construct an n-
qubit poor man’s cat state, start in the uniform superposition of n-qubits and use n− 1 of the
parity gadgets above to constrain the parity of adjacent qubits. For n = 4, we get

|+⟩

|z⟩+|z⟩√
2

|0⟩ d1

|+⟩
|0⟩ d2

|+⟩
|0⟩ d3

|+⟩

where zi ⊕ zi+1 = di for i ∈ {1, 2, 3}. We can visualize this construction as a line of qubits,
interspersed with parity qubits:

Here the solid black dots (•) represent the poor man’s cat state qubits and the white dots
(⊕) represent the parity qubits which are to be measured. As previously discussed, such a
construction (where the qubits are arranged in a 1-dimensional line) is perfectly reasonable
for constructing a poor man’s cat state. However, it will not be the version we want to use for
our separation.

What we will ultimately want is that it is easy to compute any bit of z by knowing the first
bit z1 and a few of the parity measurements. For the line construction, we can determine the
ith bit of z by a telescoping sum:

di−1 ⊕ di−2 ⊕ · · · ⊕ d1 ⊕ z1 = (zi ⊕ zi−1)⊕ (zi−1 ⊕ zi−2)⊕ · · · ⊕ (z2 ⊕ z1)⊕ z1 = zi.

This has the somewhat unfortunate consequence that zn requires a sum of n − 1 parities. In
turns out that we can do better by arranging our qubits into a binary tree. We can think of
placing the cat qubits at the vertices of the tree and the parity qubits on the edges:

By an identical argument to the line case, the above construction still yields a poor man’s cat
state. However, now notice that to compute zi starting from z1, we only need to sum up the
parities along the path from z1 to zi in the tree. Since a binary tree has diameter O(log n), we
only need to sum up O(log n) parity bits.
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We finally have our complete construction of our poor man’s cat state. It’s reasonable to
now ask. . . what is it good for? Let’s simply use the same construction as before, but replace
the cat state with the poor man’s version:

|x1⟩
|x2⟩
|x3⟩

|z⟩+|z⟩√
2

S H

S H

S H

After we apply the phase gates on the cat state qubits, we get

iz·x |z⟩+ iz·x |z⟩√
2

= iz·x
|z⟩+ (−i)z·xiz·x |z⟩√

2
= iz·x

|z⟩+ (−1)z·xi|x| |z⟩√
2

.

The gobal phase of iz·x doesn’t matter for measurement, so once again, the state before the
Hadamards is either the original poor man’s cat state or the cat state with a minus sign on the
|z⟩ term. Let b := (z · x) + |x|/2 be this phase. We get

|z⟩+ (−1)b |z⟩√
2

H⊗n

−−−→ 1√
2


 1√

2n

∑

y∈{0,1}n
(−1)z·y |y⟩+ 1√

2n

∑

y∈{0,1}n
(−1)(z·y)⊕b |y⟩




=
1√
2n+1

∑

y∈{0,1}n
(−1)z⊕y(1 + (−1)|y|⊕b) |y⟩

In other words, once again, when b ≡ 0 (mod 2), the measured string must have even Ham-
ming weight, and when b ≡ 1 (mod 2), the measured string must have odd Hamming weight.
That is, the measurement results in a y ∈ {0, 1}n such that

|y| ≡ |x|/2 + (z · x) (mod 2).

This almost exactly the original Parity Halving condition except there is an extra z · x term.
Since this is what the quantum circuit gives us, let’s just define the a new version of the Parity
Halving Problem, which is exactly that.

Relaxed Parity Halving Problem (RPHPn)
Implicit Graph: Connected tree T = (V,E) with |V | = n and diameter O(log n)

Input: x ∈ {0, 1}|V | such that |x| ≡ 0 (mod 2)

Output: y ∈ {0, 1}|V | and d ∈ {0, 1}|E| such that there exists a z ∈ {0, 1}|V | satisfying

• |y| ≡ |x|/2 + (z · x) (mod 2); and

• zu ⊕ zv = d(u,v) for all (u, v) ∈ E.

Notice that in the Relaxed Parity Halving Problem, we not only ask for the output of the
quantum circuit on the poor man’s cat state (i.e., the y ∈ {0, 1}|V |), but also the list of parities
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(i.e., the d ∈ {0, 1}|E|) that were used to construct the poor man’s cat state. The idea will be
that a classical circuit solving the relaxed Parity Halving Problem RPHPn can use these extra
parity bits to solve the original Parity Halving Problem PHPn,m for some m = o(n2), violating
Theorem 4.19.

Let’s put everything together.

Theorem 4.20. The Relaxed Parity Halving Problem RPHPn is in FQNC0 but not FNC0.

Proof. We’ve constructed the Relaxed Parity Halving Problem exactly so that constant-depth
quantum circuits can solve it, so let’s move onto the classical lower bound. Let’s suppose by
contradiction that there is a classical NC0 circuit that solves the RPHPn problem. That is, it
can output a y ∈ {0, 1}n such that |y| ≡ |x|/2 + (z · x) (mod 2).

Our plan will be to construct a constant-depth classical circuit that appends O(n log n) bits
to y that have total parity (z · x). If we can do this, the parity of y plus these new bits will
be exactly |x|/2. In other words, this new circuit will have solved the original Parity Halving
Problem for m = O(n log n), violating Theorem 4.19.

The challenge is that the classical circuit does not know z. By assumption, it only knows
the list of parities d. That said, recall that the parity bits are sufficient to reconstruct every
bit of z. That is, each zt bit for some t ∈ V can be written as a sum of zs plus the parity bits
on the path from zs to zt in the graph (where s ∈ V is chosen as some arbitrary first vertex).
Furthermore, we can assume that zs = 0 since it must be zero for one of z or z and we can
always swap what we think of as z and z. For every vertex t ∈ V , let Paths→t be the set of
edges on the path from s to t. Now, we can write

z · x =
∑

t∈V
ztxt =

∑

t∈V


 ∑

(u,v)∈Paths→t

d(u,v)


xt

If we were to expand the sum above, we would see that it is the sum of at most O(n log n)
terms of the form d(u,v)xt ∈ {0, 1} since there are n many vertices and the path from any
vertex to any other vertex is of size at most O(log n). Furtheremore, each d(u,v)xt term is
trivial to compute—it’s just the product of two bits. An NC0 circuit can just compute all these
bits in parallel.

Thefore, combining the circuit computing these O(n log n) bits with our original circuit
computing y for the Relaxed Parity Halving Problem yields a NC0 circuit for PHPn,O(n logn),
contradicting Theorem 4.19.

We finally have a complete separation of a problem that is solved by a constant-depth
quantum circuit, but not a constant-depth classical one. It’s worth emphasizing that the
quantum circuit was constructed by a sequence of classically-controlled Clifford operations.
That is, the input to the Parity Halving Problem specifies a specific quantum circuit built
from Clifford gates to run. Recalled that in Theorem 4.11 we showed that Clifford decision
problems can be solved in the classical complexity class⊕L. A slight modification of that result
shows that the relation versions of these Clifford problems can also be solved in the function
variant of ⊕L. That is, not only do we have a separation between low-depth quantum circuits
and low-depth classical circuit, but the quantum circuit is a particularly simple variety.
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How far can we hope to extend these kinds of separations? Can we show that increas-
ingly strong models of classical circuits can’t simulate these simple constant-depth quantum
circuits? In fact, we can. We start with the classical complexity class AC0:

Alernating circuits (AC0)
The class of languages L such that there exists a uniform family of constant-depth, polynomial-
size classical circuits Cn : {0, 1}n → {0, 1} built from NOT gates and AND/OR gates with
unbounded fanin where x ∈ L if and only if Cn(x) = 1.

That is, AC0 is the generalization of NC0 where the gates are allowed to depend on an arbitrary
number of input bits. Noticed that our standard lightcone arguments no longer work for
AC0—an output bit could be affected by every input bit. Nevertheless, there is a technique
called the “switching lemma” that says that AC0 circuits are essentially NC0 circuits after some
of the input bits have been randomly restricted to fixed values [Ajt83, FSS84, Has86]. The
idea is that large AND and OR gates are very sensitive. If even one input bit of a large AND
gate is set to 0, then the entire gate is nullified.

However, as we’ve seen before with the Parity Halving Game, restricted some of the inputs
to the problem doesn’t really change it’s difficulty. Stringing these ideas together, we get the
following:

Theorem 4.21 (Bene Watts, Kothari, Schaeffer, Tal [WKST19]). The Relaxed Parity Halving
Problem RPHPn is in FQNC0 but not FAC0.

At least for now, this is where we are stuck. We don’t know how to show any better
separation results (i.e., against a class of circuits larger than FAC0) in the standard circuit
setting. We will be able to show a better separation, but it will require us to work in a slightly
different circuit model that allows for some interactivity. Before we describe that result,
however, we will need to introduce some new tools.

4.7 Measurement-Based Quantum Computation

In some sense, our circuit separation results later will be based on the premise that simu-
lating a constant-depth Clifford is just as hard as simulating a Clifford circuit with arbitrary
depth. One of the key tools we will use is a technique called measurement-based quantum
computation, which is a protocol for collapsing a general quantum circuit into a sequence of
single-qubit measurements on some highly-entangled resource state that can be prepared in
constant depth.

It should be quite surprising that such a protocol exists. Indeed, it should not be the
case that every quantum circuit can be replaced by a constant-depth quantum circuit. Nev-
ertheless, what measurement-based quantum computation shows is that all your entangling
quantum operations can be applied in constant depth. The price you have to pay is that
the measurement choices must be made sequentially—in order to know which measurement
to make, you need to know the outcome of the previous measurement. These “adaptive”
measurement choices are what restore the non-parallelizability to the circuit.

We will see how this manifests once we see the specifics of the protocol. First, we must
introduce the family of resource states we will be using.
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Graph states

A graph state is a particular stabilizer state associated with an undirected graph and built from
Hadamard and controlled-Z gates.

Since we haven’t encountered the CZ gate before, let’s take a moment to define it. A
controlled-Z gate (or CZ gate) is defined similarly to the familiar controlled-X (or CNOT)
gate—if the first qubit is |1⟩, then apply a Pauli-Z operation to the second qubit. That is, for
any bits x, y ∈ {0, 1}, we have

CZ |x, y⟩ = (−1)xy |x, y⟩ .

Notice that CZ is symmetric in the sense that we can think of either bit as the control. Be-
cause of this, it is depicted in quantum circuit diagrams as a control gate with no obvious
orientation:

One can see that it is a Clifford operation by the following identity:

=
H H

To verify this identity, notice that if the bottom qubit is |0⟩, the two Hadamard gates cancel;
and if the bottom gate is |1⟩, we apply HXH = Z to the topic qubit.

Let’s now return to our construction of graph states. Specifically, the graph state |G⟩
associated with graph G = (V,E) is constructed as follows:

• For every vertex v ∈ V , create a new qubit in the |+⟩ state.

• For every edge e = (u, v) ∈ E, apply a CZ gate on qubits associated to vertices u and v.

For example, the triangle graph (shown below left) corresponds to graph state (shown
below right) with CZ gates between all pairs of qubits:

|+⟩
|+⟩
|+⟩

Graph states will be the entangled resource states we use for measurement-based quantum
computation. Recall that we want our resource states to be preparable in constant depth, and
it is certainly not true that all graph states can be prepared in constant depth. Consider, for
some intuition, a graph that has a vertex with high degree. In that case, we would need to
apply all CZ gates touching that vertex sequentially. Thankfully, the reverse is also true—if all
vertices have low degree, then the corresponding graph state can be prepared in low depth:

Lemma 4.22. LetG be any graph with maximum degree ∆. The graph state |G⟩ can be prepared
in depth ∆+ 1.
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Proof. The proof follows also immediately from Vizing’s theorem, which states that any graph
with maximum degree D can be “edge colored” with ∆ + 1 colors. That is, we can color
the edges of the graph with ∆ + 1 different colors such that no two edges of the same color
are adjacent. To finish the proof, it suffices to see that all edges of the same color can be
implemented in the graph state in the same layer, resulting in a graph state with ∆+1 layers
of CZ gates.

As we will see later, all the graph states we need for measurement-based quantum com-
putation correspond to graphs with constant degree, and therefore can be constructed in
constant depth.

The Hadamard Gadget

Somewhat surprisingly, the entire MBQC procedure boils down to the analysis of a single
gadget:

|ψ⟩ H

|+⟩

Here, |ψ⟩ is an arbitrary 1-qubit state. We would like to know what is left over on the unmea-
sured wire. We show this through a sequence of circuit identities. We start by pushing the
Hadamard gate across the CZ gate. As a result, the CZ is conjugated by H, becoming CNOT:

|ψ⟩ H
=
|ψ⟩ H

=
H |ψ⟩

|+⟩ |+⟩ |+⟩

In the last step above, we simply pushed the Hadamard into the state. Next, we add 3 CNOT
gates to our circuit that also leave it unchanged. First, we add a CNOT gate to the beginning
of the circuit, which we can do because the |+⟩ is not affected by the CNOT gate, no matter
what |ψ⟩ is. Second, we add two CNOT gates to the end of the circuit since CNOT multiplied
by itself is the identity:

H |ψ⟩
=

H |ψ⟩
=

H |ψ⟩

|+⟩ |+⟩ |+⟩

The key observation is that the first three CNOT gates multiply out to a SWAP gate. This
implies that we can simplify the circuit further by just swapping the two inputs to the circuit:

SWAP

H |ψ⟩
=

|+⟩

|+⟩ H |ψ⟩
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Therefore, the state of the circuit right before the measurement is

CNOT(|+⟩⊗H |ψ⟩) = CNOT

( |0⟩ ⊗H |ψ⟩+ |1⟩ ⊗H |ψ⟩√
2

)
=

( |0⟩ ⊗H |ψ⟩+ |1⟩ ⊗XH |ψ⟩√
2

)
,

In other words, if we measure |0⟩, then the second state is H |ψ⟩, whereas if we measure |1⟩
it is XH |ψ⟩.

Let’s recap what we just saw with the Hadamard gadget: we applied a CZ gate between
a |+⟩ state and an arbitrary 1-qubit state |ψ⟩; we measured the |ψ⟩ register in the X basis;
the state on the remaining register was XaH |ψ⟩ where a ∈ {0, 1} was the outcome of the
measurement result. That is, simply by measuring the entangled |ψ⟩ and |+⟩ states, we were
able to apply a single-qubit Hadamard gate to our state |ψ⟩ (modulo a random Pauli X term
coming from the measurement).

The above analysis shows what happens when we measure in the X-basis. What would
happen if we were to measure in the Y -basis (i.e., apply a phase gate, followed by Hadamard,
followed by a computational basis measurement)? Surprisingly, we don’t have to repeat any
of the analysis because we can easily reduce to the X-basis measurement case by pushing the
S gate across the CZ gate (we are allowed to do so because the phase gate is a rotation in the
Z basis, so SZS† = Z):

|ψ⟩ S H
=

S |ψ⟩ H
=

|+⟩

|+⟩ |+⟩ HS |ψ⟩

As a result, the second qubit will end up with the state XaHS |ψ⟩ depending on the
outcome a ∈ {0, 1} of the measurement. In fact, notice that there’s nothing special about
the S gate in the analysis above other than the fact that it commutes with CZ gate. So, for
example, we can replace the Clifford S gate with any rotation about the Z-axis:

Rz(θ) := cos(θ/2)I − i sin(θ/2)Z.

For example, Rz(π/2) ∝ S is the familiar Clifford S gate, and Rz(π/4) ∝ T is the T -gate.

MBQC on a line

The Hadamard gadget allows us to apply a single gate, but by stringing gadgets together, we
can affect a larger sequence of single-qubit gates:

|ψ⟩ Rz(θ1) H

a1

|+⟩ Rz(θ2) H

a2

|+⟩ Rz(θ3) H

a3

|+⟩

Xa1HRz(θ1) |ψ⟩ Xa2HRz(θ2)X
a1HRz(θ1) |ψ⟩
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Therefore, the state of the final unmeasured qubit is

Xa3HRz(θ3)X
a2HRz(θ2)X

a1HRz(θ1) |ψ⟩

Let’s imagine for a moment that each measurement results in the 0 outcome. We claim that by
adjusting the angles which determine the measurement basis, you can affect any single-qubit
gate:

Fact 4.23 (Euler decomposition). Every single-qubit unitary can be expressed (up to global
phase) as the product Rz(θ3)Rx(θ2)Rz(θ1).

Using the fact that Rx(θ) := cos(θ/2)I − i sin(θ/2)X = HRz(θ)H, the final state in the
example above can be written as HRz(θ3)Rx(θ2)Rz(θ1) |ψ⟩. Therefore, by Fact 4.23, we can
apply any gate to |ψ⟩ just by making the right sequence of measurements (assuming that we
always measure 0).

To be clear, we can analyze the above example as a sequence of Hadamard gadgets, but
the actual measurements and operations can all happen in parallel. That is, we can flatten
the circuit diagram above (and replace |ψ⟩ with |+⟩ for the purposes of symmetry) to obtain:

|+⟩ Rz(θ1) H

a1

|+⟩ Rz(θ2) H

a2

|+⟩ Rz(θ2) H

a3

|+⟩

Putting everything together, we can finally state the main theorem for this section:

Theorem 4.24 (MBQC on a line). Suppose you want to apply a sequence of arbitrary single-
qubit gates g1, . . . , gn to the |+⟩ state. There is a set of single-qubit measurements you can make
on the graph state corresponding to a line of Θ(n) qubits that—assuming all measurement results
are 0—results in the state gn · · · g1 |+⟩ on the last unmeasured qubit.

The proof follows from the above discussion. Notice that we start with the graph state
on the line (which can be prepared in depth 2) and make single-qubit measurements on it.
Therefore, the entire MBQC procedure only requires constant depth, and yet the state we
produced seems to require high depth in the standard circuit model. The catch, of course, is
that we also require all of the measurement results to be 0.

In reality, if you were to try to run such a procedure in a practical setting, then it would
be extraordinarily unlikely that every such measurement would be 0 (though, we circumvent
this limitation in both of the complexity consequences that we discuss in this class). There is
a way to circumvent this limitation practically as well, which is to adaptively measure your
qubits. That is, if you know the previous measurement introduced a Pauli-X error, then simply
correct for that error when you make the measurement in the next step. However, this once
again introduces depth into your quantum circuit since we need to know the result of the
measurement on the ith qubit to make the measurement on the (i + 1)st qubit. Because of
this, we will not explore this adaptive protocol in more detail.
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MBQC on the grid

Theorem 4.24 shows that we can induce arbitrary single-qubit computation by making mea-
surements on the graph state corresponding to the line:

To reiterate, in this picture, we think of each vertex in the graph as a qubit initialized in the
|+⟩ state and each line as a CZ gate between those qubits. In this section, we would like
to generalize this theorem to describe what happens when you make measurements on the
graph state corresponding to the grid:

We will start with a 2× n grid like the one above, and then sketch how to generalize to grids
with more rows. Somewhat remarkably, we will essentially need no further tools than what
was used for the case of the line—the same gadget will suffice. To start, let’s look at what
happens when we apply two Hadamard gadgets to a two-qubit state:

|+⟩

|ψ⟩
Rz(θ1) H

Rz(θ2) H

|+⟩

One way to analyze these two gadgets is to just carry out the same circuit manipulations
we’ve already seen. Letting |φ⟩ := (Rz(θ1) ⊗ Rz(θ2)) |ψ⟩, we can start again by pushing the
Rz gates to the input:

|+⟩

|φ⟩
H

H

|+⟩

=

|+⟩

H⊗2 |φ⟩

|+⟩

=

|+⟩

H⊗2 |φ⟩

|+⟩

Once again, the CNOT gates in the gray boxes are swaps that can be pushed towards the
outputs (last time we pushed towards the input, but that’s harder to draw now):

|+⟩

H⊗2 |φ⟩

|+⟩

=

|+⟩

H⊗2 |φ⟩

|+⟩
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Supposing the measurements are a1, a2 ∈ {0, 1}, the final state on the remaining qubits is

(Xa1HRz(θ1)⊗Xa2HRz(θ2)) |ψ⟩

or, in other words, exactly the result of two Hadamard gadgets applied separately. In fact,
the reason this works out nicely is precisely because the Hadamard gate is a linear operation
(think of it as a unitary followed by a projection). That is, if we decompose |ψ⟩ into the
computational basis, we can apply the Hadamard gadget to each term of the sum, yielding
the same result.

Let’s now return to the 2D grid layout. Recall that for the 1D grid, we could think about
the measurement-based quantum computation process as a sequence of gadgets, passing the
qubit from one qubit to the next. However, that was in some sense just a trick of the analysis.
We saw that all the CZ gates could be commuted to the beginning of the circuit, so that
the final measurement-based quantum computation process just looked like a sequence of
measurements on a graph state.

We’ll do the same thing for the 2D grid layout, except applying two Hadamard gadgets at
a time:

2

1

4

3

6

5

Time

Qubits

Let’s step through the measurement process for the simple 2× 3 example above, where we’ve
labeled the 6 qubits we’ll be using. The leftmost two qubits (1 and 2) start in the state |++⟩
and we immediately apply a CZ gate between them. Then, we create the middle two qubits
(3 and 4), each in the state |+⟩. Apply the Hadamard gadget on qubits 1 and 3, and then on
3 and 4. By our previous analysis of the Hadamard gadget on multi-qubit states, the state of
the system is now

(Xa1HRz(θ1)⊗Xa2HRz(θ2))CZ |++⟩ .
We can continue by applying a CZ gate between the middle qubits (3 and 4), and then once
again applying the Hadamard gadget between the middles qubits and the rightmost qubits.
The key observation throughout all of this analysis is that the CZ gates we apply in this
construction can all be pushed to the beginning of the circuit since they commute with all
other operations that have previously been made. This is readily apparent from the circuit
below for this process:

|+⟩1 Rz(θ1) H

|+⟩2 Rz(θ2) H

|+⟩3 Rz(θ3) H

|+⟩4 Rz(θ4) H

|+⟩5
|+⟩6
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Commuting all the CZ gates to the beginning, we get:

|+⟩1 Rz(θ1) H

|+⟩2 Rz(θ2) H

|+⟩3 Rz(θ3) H

|+⟩4 Rz(θ4) H

|+⟩5
|+⟩6

From this, we can clearly see the measurement-based quantum computation process as a
sequence of measurements on the graph state corresponding to the grid.

To complete the MBQC protocol, it suffices to show that every 2-qubit gate can be decom-
posed as a sequence of gates of the form (H ⊗H)(Rz(θ1) ⊗ Rz(θ2))CZ. This is a bit trickier
to show, but amounts to essentially a brute force calculation. Therefore, putting everything
together, we get

Theorem 4.25 (MBQC on the width-2 grid). Suppose you want to apply a sequence of arbitrary
two-qubit gates g1, . . . , gn to the |++⟩ state. There is a set of single-qubit measurements you
can make on the graph state corresponding to a 2 × Θ(n) grid of qubits that—assuming all
measurement results are 0—results in the state gn · · · g1 |++⟩ on the last two unmeasured qubit.

Suppose now we wanted to simulate an n-qubit quantum circuit with a measurement-
based quantum computation protocol. The idea is essentially the same—each row of the
quantum circuit will represent a qubit and each column represents the state of the quantum
circuit at a particular time slice. Using the MBQC procedure on grids with two rows (Theo-
rem 4.25), we can simulate a two-qubit gate on any pairs of qubits.

This general construction is perhaps most easily understood through an example. Con-
sider the following 4-qubit quantum circuit built from arbitrary 2-qubit gates g1, . . . , g5:

g1 g4

g3

g2 g5

We could simulate this circuit by making measurements on the graph state:
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g1 gadget g4 gadget

g3 gadget

g2 gadget g5 gadget

· · · · · ·

· · ·

· · · · · ·

Notice that this is just the usual width-4 grid with some of the connections removed, so
the corresponding graph state can still be constructed in constant depth. Each 2-qubit gate
requires a gadget of some constant size, so the overall number of qubits in your graph state
is bounded above by some constant times

(number of qubits in the circuit)× (depth of the circuit).

Importantly, since the gate gadgets in the measurement-based quantum computation protocol
only act on adjacent rows of the grid, the depth of the circuit must be measured in terms of
the depth when gates in the circuit are only allowed to act on adjacent qubits.

4.8 Simulating constant-depth Clifford circuits requires ⊕L
Recall our goal: we want to show that simulating constant-depth Clifford circuits requires
classical circuits of much higher depth. Since general Clifford circuits can be simulated in the
complexity class ⊕L, we can at most hope that classical circuits must be at least as powerful
as ⊕L. We will show that this is indeed the case!

Unfortunately, as discussed earlier, we will no longer be able to use the Parity Halving
Problem or, in fact, any relation problem. We will need to move to an entirely new paradigm
of computation. The new model will be one that involves interaction—the input is given in
two distinct rounds, and the output for the first round must be given before the second round
input is known. We can think of this as an interactive protocol between a referee and a player:

x1

y1

x2

y2

Referee Player

The referee asks a question x1 ∈ {0, 1}n1 in the first round, and then the player immediately
responds with an answer y1 ∈ {0, 1}m1 . The referee then asks a second question x2 ∈ {0, 1}n2 ,
and the player responds accordingly with y2 ∈ {0, 1}m2 . The game is governed by a relation

R ⊆ {0, 1}n1 × {0, 1}n2 × {0, 1}m1 × {0, 1}m2 ,

and the player wins if (x1, x2, y1, y2) ∈ R.
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The relation we will use will once again come from measurements on a graph state. For
every input length, there will be some understood graph state for which the referee will ask
questions. In the first round, the referee will ask the player to measure some subset of qubits
of the graph in a specified basis, and the player will respond with some measurement result
which is consistent with those questions. In the second round, the referee will specify bases
for the remaining qubits of the graph state, and the player must return a measurement result
on those qubits consistent with the measurement results given in the first round.

This may seem somewhat odd. From the perspective of the quantum circuit, this interac-
tive protocol is just as easy as the non-interactive protocol—just measure the qubits. However,
the interactive problem is very different for a classical device trying to simulate the measure-
ments.

To see why this might be the case, let’s consider a classical device which can win the
interactive graph state measurement problem. After the classical device has answered the first
question, the classical device has a classical description of the graph state after the first round
measurements have been made. This gives the classical device a power that a quantum circuit
faithfully executing the measurements doesn’t have. Namely, the classical device can copy, or
perhaps stated more scarily, clone its copy of the intermediate state between rounds 1 and 2.
Since the classical device wins the game by assumption, the classical device can effectively
measure the cloned state repeatedly to learn some information hidden in the state. We will
show that learning this hidden information is equivalent to solving arbitrary ⊕L problems.
Therefore, whatever kind of classical device solves the interactive graph state problem, it
must at least have the power of ⊕L.

This is subtle, so it’s worth reiterating. This argument does not imply that constant-depth
quantum circuits can solve ⊕L problems. Instead, we show that a classical device that can
simulate constant-depth quantum circuits can solve ⊕L problems. Formally, we will show the
following theorem:

Theorem 4.26 (Grier, Schaeffer [GS20]). Suppose there is a classical circuit O solving the
interactive graph state measurement problem. Then, ⊕L ⊆ (AC0)O.

Let’s see how we might go about using this theorem to prove separations. Suppose that
the circuit O could be instantiated with an AC0 circuit. By the theorem, we have

⊕L ⊆ (AC0)AC
0

= AC0

where the last equality follows from the observation that giving an AC0 circuit the “additional”
ability to solve AC0 problems doesn’t increase its power. The Parity problem (i.e., is the
Hamming weight of the input even or odd?) is solvable by a ⊕L machine, but Parity is not
in AC0 [Ajt83, FSS84, Has86], so it is impossible for AC0 to contain ⊕L. This contradiction
implies that there must not have been an AC0 circuit to solve the interactive grid measurement
problem.

We can generalize this argument to show that not even AC0[p] circuits can solve this
problem. Once again, invoking the theorem, we get

⊕L ⊆ (AC0)AC
0[p] = AC0[p]

since we can replace any oracle access with a constant-depth circuit with MODp gates. How-
ever, ⊕L ̸⊆ AC0[q] for all primes q [Raz87, Smo87]; Therefore, O /∈ AC0[p] for any prime p. In
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other words, we have exhibited an interactive game that can be won by QNC0 circuits but not
by AC0[p] circuits. We will see much more “impressive” separations later between quantum
and classical complexity classes, but these separations will rely on unproven conjectures. This
is one of the largest-known unconditional separations between natural classes of quantum
and classical circuits.

For the purposes of these lecture notes, let’s focus on a simpler variant of Theorem 4.26,
where we only need to show hardness for NC1. To show this, we only need to work with graph
states corresponding to width-2 grids. That is, we will show that if there is a classical device
O that can solve the interactive graph state measurement problem on the 2 × n grid, then
NC1 ⊆ (AC0)O. All of the separations we claimed previously (e.g., against AC0[p] circuits) still
hold.

There will be four main ingredients that go into the proof.

Ingredient 1: 2-qubit Clifford circuits are NC1-hard

Let’s start with a 2-qubit modification of the Clifford circuit problem that earlier showed was
⊕L-complete.

2-qubit Clifford Circuit Problem
Input: List of 2-qubit Clifford gates g1, g2, . . . , gn
Output: Their product gngn−1 · · · g1

Theorem 4.27. The 2-qubit Clifford Circuit Problem is NC1-hard, even under the promise that
the output is I ⊗ I or H ⊗H.

We omit the proof but note that this is a consequence of Barrington’s Theorem, namely
that multiplying over the symmetric group S5 is an NC1-hard problem. Indeed, there is a
subgroup of the Clifford group (the Clifford group mod the Pauli group) that is isomorphic
to S6, so that multiplication over the Clifford gates must be at least as hard as multiplication
over S5.

Ingredient 2: Measurement-Based Quantum Computation

Above, we have presented a problem that seems in some sense inherently sequential, or at
the very least cannot be computed in constant depth. However, using the measurement-
based quantum computation tricks of Section 4.7 we can show the following special case of
Theorem 4.25, where we only wish to use MBQC for Clifford computation:

Corollary 4.28. For all 2-qubit Clifford gates g, there exists a set of 38 measurements on the
2 × 20 grid graph state that leaves the unmeasured qubits in the state Pg |00⟩ for some Pauli
matrix P , where P depends on the outcomes of the measurements.

As we’ve seen, you can string these gadgets together, so that if you have a graph state of
size 2× (20n) and a list of gates g1, . . . , gn, then there is a set of measurements on the graph
state that creates the state

PngnPn−1gn−1 . . . P1g1 |00⟩
where the Pauli terms P1, . . . , Pn depend on the measurement results obtained in each one of
the gadgets.
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Next, recall that the Pauli matrices are a normal subgroup of the Clifford group (i.e.,
conjugating a Pauli operator by a Clifford operator yields another Pauli). This implies that
you can “push” Pauli elements through Clifford elements:

gP = gP (g†g) = (gPg†)g = P ′g

where P ′ is just some other Pauli operator. Using this idea, we can propagate all the Pauli
operators to the front of our expression:

Pngn . . . P1g1 = P ′
nP

′
n−1 . . . P

′
1gn . . . g1 = P ∗gngn−1 . . . g1 |00⟩

for some Pauli operator P ∗.
Recall that we can use the promise that gngn−1 · · · g1 is either I ⊗ I or H ⊗ H. By our

previous observation, we just need to distinguish between these cases where the state has
been corrupted by some unknown Pauli P ∗. (Note that in principle, one could compute P ∗

from the measurement outcomes. Unfortunately, this computation is itself NC1-hard, so we
can’t do this in our reduction).

To circumvent this issue, let’s first consider the stabilizer groups for our ending state |00⟩
and |++⟩, respectively: 



I I
ZI
IZ
ZZ


 ,




I I
X I
IX
XX




Finally, applying P ∗ to the state is equivalent to conjugating by P ∗ in the stabilizer group.
The key fact is that conjugation by Pauli matrices can only change the sign. In particular, the
output of the measurement based quantum computation is




I I
aP I
b IP
abPP




for some P ∈ {X,Z} and a, b ∈ {±1}. Our goal then is to distinguish between P = X and
P = Z.

Ingredient 3: Randomizing the Output

In the next two sections, we will treat the player in the interactive graph state measurement
problem as a sort of adversary. Recall that our claim is that we can leverage the simulator
to solve the Clifford multiplication problem. In particular, this should be true regardless of
which answers the simulator gives us. Therefore, we should expect that the simulator gives
us the maximally useless answers at all times. Or, in other words, that the simulator is acting
adversarially. To be clear, the simulator must still be correct, but it can still try to answer
correctly, without being useful.

Unfortunately, it will turn out that if we only have two possible outcomes (the I ⊗ I
outcome and the H ⊗H outcome), then adversarial outcomes will prevent us from learning
which state we have. To overcome this, let us briefly describe how we can “randomize” the
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output of the previous step. Before we compute gn · · · g1, we can generate random Clifford
gates h0, . . . , hn and redefine g′i = higih

−1
i−1. Then,

g′ng
′
n−1 . . . g

′
1 = hngnh

−1
n−1hn−1gn−1h

−1
n−2 . . . h1g1h

−1
0 = hngngn−1 . . . g1h

−1
0

Thus, rather than the two specific stabilizer groups above, we now must distinguish between
two stabilizer groups that are random! Since we chose hi, we know which outcome with
correspond to I⊗I andH⊗H, but what we have essentially done is made the input uniformly
random among all sets of n Clifford gates. The adversary does not know.

Ingredient 4: The Magic Square

Our goal is to measure our unknown 2-qubit state to learn what it is. It will turn out that any
single measurement cannot give us enough information to determine this state. So, this is
the first place we will use interactivity and the rewinding ingredient shown earlier. Still, even
with many measurements, it’s a bit unclear which measurements we should make.

Our measurements will correspond to the rows/columns of the following matrix called
the Magic Square: 


XX Y Y ZZ
Y Z ZX XY
ZY XZ Y X




Let’s note some important properties of this arrangement of Pauli operations:

1. The Pauli operators within each column and row commute. This means that we can
“measure” all 3 Pauli operations simultaneously, i.e., rotate to the Z-basis and then
measure.

2. The product of each row is −II. That is, the sum of measurement results on a row must
be odd.

3. The product of each column is II. That is, the sum of measurement results on a column
must be even.

We now need two key observations:

Fact 4.29. If a measured Pauli operator happens to be in the stabilizer group of the unknown
state, then the measurement result for that Pauli is equal to the sign of the Pauli in the stabilizer
group (This is just a generalization of Lemma 4.16 from the previous lecture).

Fact 4.30. There is no consistent way to label a 3× 3 matrix with 0/1 values such that the sum
of each row is odd and the sum of each column is even.

Therefore, if we make all measurements corresponding to each row and each column,
there must be some measurement output which was different for a particular Pauli (Fact 4.30).
On the other hand, if we happened to measure some Pauli that was in the stabilizer group,
then we could not have gotten different results. Together, the 6 measurements reveal at least
one Pauli element which is not in the stabilizer group of the measured state.
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Putting It All Together

Let’s first consider the problem from the perspective of the quantum algorithm. In round
1, it uses measurement-based quantum computation (ingredient 2) to prepare the state
P ∗gn . . . g1 |00⟩ in constant depth. The gates g1, . . . , gn correspond to the input of some 2-
qubit Clifford multiplication problem (ingredient 1). In round 2, it measures that state in the
specified basis.

Now consider a classical simulator achieving the same output as the quantum algorithm.
After round 1, the simulator has some classical internal state which captures the true quantum
state P ∗gn . . . g1 |00⟩. Using the “rewinding” technique on this intermediate state, it can make
many possible measurements in round 2. Armed with this power, it measures all the magic
square Paulis (ingredient 4). In this process, it learns some non-stabilizer of the state.

Since we randomized our inputs (ingredient 3), this non-stabilizer will appear in one
of the two stabilizer groups for the states we are trying to distinguish with some constant
probability. In this case, we learn exactly which one of our two states we have, and so we
have solved the Clifford multiplication problem.

There are many details left to check here, but this is most of the main ideas. For example,
we must check that this reduction can indeed be done with AC0 circuits, which upon closer
inspection are actually randomized, and so there are more subtleties to handle.



Chapter 5

Quantum Computational Advantage

In this chapter, we move on from quantum advantage against low-depth classical circuits
to consider what is sometimes called “quantum supremacy” or “quantum computational ad-
vantage.” In this setting, we want to devise some task that can be solved efficiently by a
quantum computer, but for which there is no analogous efficient classical algorithm. We will
not concern ourselves that the task is “useful” in the way that, say, Shor’s algorithm is useful
in cryptographic contexts. We merely want to show that there is any quantum problem that
lies outside of classical polynomial time.

In some sense, the question we are asking is whether or not we can use complexity theory
to show that our physical world is quantum mechanical. That is, if we could build a quantum
device to perform some task that no classical computer could solve, then nature’s laws are at
least not simulatable on a classical computer.

With such a lofty goal, we will need to have suitably realistic expectations. For one, as
we sketched in Chapter 2, proving that P is distinct from BQP necessarily implies that P is
separate from PSPACE, which is a longstanding open question in classical complexity theory.
Therefore, we will have to content ourselves with a separation between quantum and classical
computers that is predicated on some kind of assumption.

It would be fantastic if our quantum-classical separation only required the assumption
that P ̸= PSPACE. This would give strong evidence that classical and quantum computation
are indeed different. Unfortunately, as we shall soon see, we will actually require conjectures
that are quite a bit stronger. Moreover, as we define tasks that are more likely to be physically
realizable by experiments, we will require conjectures that are stronger.

We begin our search for such problems with a discussion of classical complexity, and
a review of what sorts of classical complexity assumptions we can use as a basis for our
separation results.

5.1 Complexity classes in the polynomial hierarchy

We start by defining a hierarchy of classes that lie between P and PSPACE. To see when we
might need such a generalization, consider the following problem:

Minimum Equivalent Formula
Input: Polynomial-size formula φ and integer k (expressed in unary)
Question: Is there a formula of size at most k that is equivalent to φ?
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We haven’t been explicit about how the formula is represented, but let’s make the rea-
sonable assumption that if the formula has size 0, then it evaluates to false. We can now
easily see that if we had an oracle to solve the Minimum Equivalent Formula problem, then
we could immediately solve any problem in NP. To see this, consider some NP-hard formula
φ and query the oracle on φ and k = 0. If the formula is unsatisfiable, it is always false, so
there is an equivalent formula of size 0; otherwise, it must be satisfiable.

On the other hand, it’s not clear how you could use an NP oracle to solve the Minimum
Equivalent Formula problem. Indeed, you can use your NP oracle to search for a smaller
formula, but then you have to check it on all inputs to see if it’s equivalent to the input
formula. If your NP machine itself had an oracle for NP, then it could search for a small
formula and then use the oracle to check that there are no inputs which distinguish the two
formulas. In other words, we’ve shown that Minimum Equivalent Formula is in NPNP. In fact,
this problem is NPNP-complete [Uma01].

Let’s now define a hierarchy of NP and coNP machines that have oracle access to more
NP machines.

Polynomial-Time Hierarchy (PH)
Complexity classes recursively defined as follows:

• Base case: ΣP
0 = ΠP

0 = P

• Recursive case: Σi = NPΣP
i−1 and Πi = coNPΣP

i−1

The polynomial hierarchy is defined as the union of these classes: PH =
⋃
iΣ

P
i .

For example, ΣP
1 = NP and ΣP

2 = NPNP. We’ve seen with the Minimum Equivalent For-
mula problem that there is a problem in ΣP

2 that doesn’t appear to be in ΣP
1 . One reasonable

question is whether or not this phenomenon exists for all levels of the polynomial hierarchy.
Could it be that after some number of levels, adding an additional NP oracle doesn’t help? It
is widely believe that this is not true:

Conjecture 5.1. The polynomial hierarchy is infinite: ΣP
i ⊊ ΣP

j for all i < j.

This will be one of the central assumptions in our proofs of quantum computational ad-
vantage, though we will see exactly how this becomes relevant later.

For now, let’s turn to ways to upper bound the power of the polynomial hierarchy. The first
claim is that PH ⊆ PSPACE. To see this, notice that any language in PH can be solved with k
nested NP oracles for some k ∈ N. Each one of these oracles is some polynomially verifiable
search problem. Furthermore, solving the search problem is possibly with polynomial space
by simply iterating over all possible solutions. Since k is a constant (k does not grow with the
input size), the nested search problems can be solved in polynomial space.

As it turns out, however, PSPACE is not the tightest upper bound on the complexity of the
polynomial hierarchy that we know, though improved upper bounds are significantly harder
to prove:

Theorem 5.2 (Toda’s Theorem). PH ⊆ PPP.

Finally, we note that polynomial-time randomized computation is not too powerful in the
sense that it is still contained within some finite level of the polynomial hierarchy:

Theorem 5.3 (Sipser-Gács-Lautemann theorem [Sip83, Lau83]). BPP ⊆ ΣP
2 ∩ΠP

2 .
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5.2 The hardness of exactly simulating quantum circuits

Our goal is to show that there are distributions that quantum circuits can sample from that
efficient classical computers cannot sample from. Formally, a sampling problem is defined by
a suite of distributions {Dx}x∈{0,1}∗ . An exact sampler is any procedure that, given an input
x ∈ {0, 1}n, samples an outcome y ∼ Dx from the distribution. Note that this is a harder task
than the relation problems that were used to show quantum advantage with Clifford circuits
(see Section 4.4). There, the goal in some sense was to output any element in the support of
the distribution. Now, the probabilities of the output of the sampler must exactly reproduce
the entire distribution.

One way to make sure that a quantum circuit is able to solve some sampling problem is
just to define the sampling problem with respect to what some family of quantum circuits is
already doing. That is, for some family of quantum circuits {Qn}∞n=1, we define the distribu-
tion Dx for a given input x ∈ {0, 1}n simply as what you would obtain by measuring some
number of the output qubits of Qn:

|x⟩ Qn y ∼ Dx

We want to show that no polynomial-size classical circuit can sample from the same distribu-
tion. While we won’t be able to show such a separation unconditionally, we will be able to
base the hardness of classical sampling on a standard complexity-theoretic assumption.

Let’s start by considering a somewhat weird model of quantum circuits that will be sur-
prisingly relevant to our proof. In particular, let’s consider a model of “postselected” quantum
computation where we get to choose or postselect which measurement outcome we get from
any measurement. That is, even if the actual probabiltiy of measuring a some outcome is
incredibly small (so that we’d never see it in a real quantum experiment), we can still choose
to see that outcome. Formally, we define the following complexity class:

Postselected BQP (PostBQP)
Languages L such that there is a poly-uniform family of polynomial-size quantum circuits
{Qn}∞n=1 such that for all x ∈ {0, 1}n:

• The probability of measuring |1⟩ on the first qubit of Qn |x⟩ |0 · · · 0⟩ is nonzero.

• If x ∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring |1⟩
on the second qubit is at least 2/3.

• If x ̸∈ L, then conditioned on the first qubit being |1⟩, the probability of measuring |1⟩
on the second qubit is at most 1/3.

Of course, such a postselected model is not unique to quantum computation. We can
consider a similar variant of BPP where we can to postselect on certain random outcomes:



CHAPTER 5. QUANTUM COMPUTATIONAL ADVANTAGE 88

Postselected BPP (PostBPP or BPPpath)
Languages L such that there is poly-uniform family of two-output polynomial-size classical
circuits {Cn}∞n=1 such that for all x ∈ {0, 1}n:

• Postselect strings: Rx := {r ∈ {0, 1}poly(n) : first output of Cn(x, r) is 1} ≠ ∅
• If x ∈ L, the second output of Cn(x, r) is 1 for at least 2/3 fraction of strings in r ∈ Rx.

• If x ̸∈ L, the second output of Cn(x, r) is 1 for at most 1/3 fraction of strings in r ∈ Rx.

The key insight we will use is that if there is an exact classical sampler for any polynomial-
size quantum circuit, then it must be the case that postselected classical computation is the
same as postselected quantum computation, i.e., PostBPP = PostBQP. Indeed, if the output
distribution of a quantum and classical circuit are the same, then the marginal distributions
on the first and second (qu)bits must also be the same. However, this is where we can attempt
to prove a contradiction—postselected quantum computation is extremely powerful, whereas
postselected classical computation is only moderately powerful.

Formally, a result of Aaronson shows that PostBQP = PP [Aar05]. Therefore, by Toda’s
theorem, we have that poly-time computation with query access to a PostBQP device can
solve any problem in the polynomial hierarchy:

PPostBQP = PPP ⊇ PH.

Meanwhile, postselected classical computation is relatively less powerful. In particular, PostBPP ⊆
BPPNP [HHT97]. Combined with the Sipser-Gács-Lautemann theorem, we have that

PostBPP ⊆ NPNPNP

= ΣP
3 .

Assuming that PostBPP = PostBQP, we can combine the above to get the following sequence
of conclusions:

PH ⊆ PPostBQP = PPostBPP = PΣP
3 = ΣP

3 .

We’ve arrived the following theorem:

Theorem 5.4 (Hardness of exact sampling). Suppose that every family of BQP circuits can be
exactly sampled with a family of BPP circuits. Then, the polynomial hierarchy collapses to the
third level: PH ⊆ ΣP

3 .

Because the non-collapse of the polynomial hierarchy is a widely accepted conjecture in
complexity theory, the above theorem is strong evidence that there is no efficient classical
method to sample exactly from the output distributions of polynomial-size quantum circuits.

5.3 Hardness of multiplicative approximations

While exact hardness of sampling results provide very strong evidence for quantum advan-
tage, they are nevertheless somewhat disappointing. To state the obvious, exact sampling is
an extremely stringent requirement. The distribution that we are asking the classical simula-
tor to sample from has an exponential support with exponentially small probabilities. Indeed,
if we designed a “real” quantum device to perform the same task, it is unlikely that it would
sample from that same distribution.
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Therefore, we would like to relax the sampling condition. Can we show that approxi-
mately sampling from quantum circuits is still hard? We will start to answer this question
with multiplicative approximations, which is still a very strong requirement, but will never-
theless help us build up our tool chest for tackling more realistic notions of approximations.
Moreover, we will eventually require stronger conjectures in order to weaken our notion of
approximation. For multiplicative approximations, we can still use the same conjecture that
we used for exact sampling hardness.

For some c ≥ 1, we say that ẑ ∈ R is a multiplicative c-approximation of z ∈ R if

c−1z ≤ ẑ ≤ cz.

We say a distribution multiplicatively c-approximates another distribution if it multiplicatively
c-approximates every output probability. We are interested in classical algorithms that can
multiplicatively c-approximate the output of a quantum circuit.

To show hardness of approximation, we are once again going to exploit a key difference
between classical and quantum samplers—in this case, the difference between probabilities
(which are always positive) and amplitudes (which can be both positive and negative). The
complexity-theoretic distinction here can be boiled down to the difference between approxi-
mation in two different counting complexity classes.

Counting classes

Counting classes are a specific kind of function complexity class where functions are defined
in terms out of how many inputs cause a machine to accept. Our discussion will center around
two complexity classes where the goal is the count the number of accepting solutions for some
polynomial time computation.

Counting Polynomial Time (#P)
Functions f : {0, 1}∗ → N such that there exists a poly-time Turing machineM and polynomial
q such that, on input x ∈ {0, 1}n, f counts the number of strings r ∈ {0, 1}q(n) causing M to
accept x. That is, for all x ∈ {0, 1}n

f(x) = |{r ∈ {0, 1}q(n) :M(x, r) = 1}|.

That natural complete problem for #P (pronounced “sharp P”) is counting the number of
inputs that cause some poly-sized circuit to output 1. In other words, #P is about counting
the number of satisfying solutions, whereas a decision class like NP is about deciding if there
is at least one satisfying solution.

The salient feature of #P for our purposes is that solutions only add up, rather than cancel
each other out. Let’s contrast #P with another function class called GapP, where we do not
have this property.

Gap P (GapP)
Functions f : {0, 1}∗ → N such that there exists a poly-time Turing machineM and polynomial
q such that, on input x ∈ {0, 1}n, f counts the difference in the number of strings r ∈ {0, 1}q(n)
that cause M to accept and reject. That is, for all x ∈ {0, 1}n

f(x) = |{r ∈ {0, 1}q(n) :M(x, r) = 1}| − |{r ∈ {0, 1}q(n) :M(x, r) = 0}|.
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Equivalently, GapP is the closure of #P under addition and subtraction.

At first glance, these two complexity classes don’t seem meaningfully different. Indeed,
with some trivial post-processing, we can compute a GapP function given the ability to com-
pute a #P function. That is, if k of the 2m strings in {0, 1}m cause a Turing machine to accept,
then the number of strings causing rejection is 2m− k, and so the number of accepting minus
rejecting strings is 2k − 2m. This shows that P#P = PGapP.

The key difference is when approximating these two kinds of functions. We start with
approximating #P functions:

Theorem 5.5 (Stockmeyer counting). There is a BPPNP algorithm to multiplicatively approxi-
mate any function in #P to error 1 + 1/poly(n).

In other words, Stockmeyer counting essentially says that the ability to detect a solution
(i.e., with the NP oracle) confers the ability to approximately count the number of solutions.

Proof sketch. While some details need to be worked out, the idea is fairly simple. Let’s sup-
pose we’re trying to count the number of solutions to some poly-time computable function
f : {0, 1}n → {0, 1}. First use your NP oracle to detect if there is a solution. If there are
no solutions, then you are done immediately since 0 is a perfect count of the number of so-
lutions. Otherwise, generate a random hash function h1 : {0, 1}n → {0, 1} using your BPP
capabilities. Now create a new function f1(x) := f(x) ∧ h1(x), which only accepts if both the
original function f and the new hash function h1 accept. With high probability, this will cut
the number of solutions roughly in half.

Once again, run your solution detection algorithm. If the number of solutions is still
greater than zero, then consider f2(x) := f(x) ∧ h1(x) ∧ h2(x) for another hash function h2,
which cuts the solution space in half yet again. Continue cutting the space of solutions in half
like this until the NP oracle detects that there are 0 solutions remaining. If we’ve used m total
hash functions, then the number of solutions is approximately 2m − 1. Formally checking
the details of this process will show that it yields a multiplicative 2-approximation. To get
an approximation factor polynomially close to 1 consider the following modification of the
original #P function f you are trying to approximate:

g(x1, x2, . . . , xm) = f(x1) ∧ f(x2) ∧ · · · ∧ f(xm)

Notice that if f is computable in polynomial time, then g is also certainly computable in
polynomial time if m = poly(n). Furthermore, if f had k solutions, then g has km solutions.
A 2-approximation k̂ to the number of solutions to g implies

1

2
km ≤ k̂ ≤ 2km =⇒ 1

21/m
k ≤ k̂1/m ≤ 21/mk.

Since 21/m < 1 + 1/m, we get that k̂1/m is a 1 + 1/m approximation to k.

Let’s now consider the analogous approximate computation of functions in GapP. For
some intuition, consider a function where the number of solutions is extremely close to the
number of non-solutions. Since we’re aiming for a multiplicative approximation, we must be
able to detect with 100% probability when the number of solutions is exactly equal to the
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number of non-solutions. This looks like a problem that requires a PP oracle rather than a NP
oracle. It is possible to formalize this intuition to show that multiplicatively approximating a
GapP function it itself a GapP-hard problem:

Theorem 5.6. Exactly computing GapP functions is poly-time reducible to multiplicatively ap-
proximating GapP functions. Formally, let O be an oracle that can multiplicatively approximate
GapP functions to any non-zero error. Then PGapP ⊆ PO.

Proof. Let f : {0, 1}n → {0, 1} be a poly-time computable function, and let ∆f := |f−1(0)| −
|f−1(1)| be the number of solutions minus the number of non-solutions to f . Recall that
computing ∆f is a GapP-complete problem. We will use the fact that if we can multiplicatively
approximate ∆f (to any multiplicative factor), then we can detect if ∆f is positive, negative,
or zero. Let’s also use that GapP is the closure of #P under addition and subtraction. In
particular, from f , we can create a new poly-time computable function g such that ∆g = ∆f±c
for any poly-time computable number c.

This gives us a relatively straightforward way to binary search for the exact value of ∆f .
A priori, we have that ∆f is in the interval [−2n, 2n]. A multiplicative approximation to
∆f reveals that it is either 0 or in one of the two intervals [−2n, 0] or [0, 2n]. That is, we
either learn ∆f exactly or we cut the possible interval in which ∆f can live in half. If, say,
∆f ∈ [−2n, 0], add 2n−1 so that it lies in the interval [−2n−1, 2n−1] and recurse.

Approximately computing probabilities in quantum and classical circuits

Computing output probabilities in classical circuits is almost a #P task by definition—to com-
pute the probability of outputting y ∈ {0, 1}n, count how many settings of the random bits
r ∈ {0, 1}m cause the circuit to output 1:

input→ x ∈ {0, 1}n
C y ∼ C(x, r) on random r

random
bits → r ∈ {0, 1}m

Does computing the output probabilities of quantum circuits naturally correspond to
GapP-complete problems? Consider the following quantum circuit that applies a classical
function f : {0, 1}n → {0, 1} in superposition via the phase oracle (see Section 3.1):

|0n⟩ H⊗n Of H⊗n

The final state is given by

|0n⟩ H⊗n

−−−→ 1√
2n

∑

x∈{0,1}n
|x⟩ Of−−→ 1√

2n

∑

x∈{0,1}n
(−1)f(x) |x⟩ H⊗n

−−−→ 1

2n

∑

y∈{0,1}n

∑

x∈{0,1}n
(−1)f(x)+x·y |y⟩

so the amplitude on the all-zeroes state is given by

⟨0n|H⊗nOfH
⊗n |0n⟩ = 1

2n

∑

x∈{0,1}n
(−1)f(x) = ∆f

2n
.
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In other words, computing quantum amplitudes is at least as hard as computing ∆f , which
is a GapP-hard function! Unfortunately, we now run into the distinction between computing
amplitudes and probabilities. Importantly, if we have a sampler for a quantum circuit, we
have a proxy for computing probabilities, not amplitudes. That is, a multiplicative classical
sampler we allow us to estimate the absolute value of ∆f , rather than ∆f itself. We seem to
need a version of Theorem 5.6 wherein the multiplicative approximation only tells us whether
or not ∆f is zero or non-zero. Thankfully, there is a decision variant of GapP that does just
that:

Exact-Counting Polynomial-Time (C=P)
Languages L such that there exists a poly-time Turing machine M and a polynomial q such
that for all x ∈ {0, 1}n, x ∈ L iff

|r ∈ {0, 1}q(x) :M(x, r) = 0}| = |r ∈ {0, 1}q(x) :M(x, r) = 1}|.

In summary, the construction above shows that multiplicative approximating the outputs
of a classical circuit is equivalent to deciding problems in C=P. A variant of Toda’s theorem,
shows that this is still an extremely powerful primitive:

Theorem 5.7 (Toda and Ogiwara [TO92]). PH ⊆ BPPC=P.

Multiplicative approximations imply polynomial hierarchy collapses

We are finally ready to piece together all of the above results to show that multiplicatively
sampling from the outputs of quantum circuits implies that the polynomial hierarchy col-
lapses. The proof outline is more-or-less identical to the one for exact sampling. Let’s start
with the assumption that there is a polynomial-time classical sampling algorithm that can
multiplicatively sample from the output distribution of a given quantum circuit. Let O be
the oracle for multiplicative approximations of the output probabilities given polynomial-size
quantum circuits. On the one hand, since we have a classical sampler, we can use Stockmeyer
counting to conclude that O ⊆ BPPNP, and so

BPPO ⊆ BPPBPPNP ⊆ BPPNP ⊆ ΣP
3 .

On the other hand, we’ve just shown that multiplicative approximations imply algorithms for
problems C=P, so we get

BPPO ⊇ BPPC=P ⊇ PH

and so once again combining the two cases, we get that the polynomial hierarchy collapses
to the third level:

PH ⊆ ΣP
3 .
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Appendix A

Classical complexity

In this appendix, we review some of the important concepts from classical complexity theory.

A.1 Complexity classes for decision problems

A language L ⊆ {0, 1}∗ is simply a set of strings over the binary alphabet. The decision problem
corresponding to a language L is the task of computing membership in the language. That is,
given input x ∈ {0, 1}∗, output “YES” if x ∈ L and output “NO” if x ̸∈ L.

A complexity class is a collection of languages recognized by a particular model of compu-
tation. The complexity classes below are defined in terms of classical Turing machines. The
more resources we give the Turing machine (e.g., time, space, randomness, or nondetermin-
ism), the more languages that model of Turing machine can recognize.

Polynomial Time (P):
Languages L such that there exists a deterministic poly-time Turing machine M such that
M(x) accepts iff x ∈ L.

Non-deterministic Polynomial Time (NP):
Language L such that there exists deterministic poly-time Turing machine M and polynomial
q such that for all x ∈ {0, 1}n

• If x ∈ L, ∃y ∈ {0, 1}q(n) such that M(x, y) accepts

• If x /∈ L, ∀y ∈ {0, 1}q(n), M(x, y) rejects.

NP is a generalization of P (just forget about the witness string y), so P ⊆ NP. It is widely
conjectured that P ̸= NP, but we do not have a proof!

Bounded-error Probabalistic Polynomial Time (BPP):
Languages L such that there exists a deterministic poly-time Turing machine M and polyno-
mial q such that for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts for at least 2/3 of the strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts for at most 1/3 of the strings y ∈ {0, 1}q(n).
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That is, y is a random string given to the Turing machine. Once again, it is clear that P ⊆ BPP
since we can just forget about the extra random bits. However, we do not know if BPP ⊆ NP
or if NP ⊆ BPP, though it is widely conjectured that P = BPP.

Probabilistic Polynomial Time (PP):
Languages L such that there exists a deterministic poly-time Turing machine M and polyno-
mial q such that for all x ∈ {0, 1}n

• If x ∈ L, then M(x, y) accepts for more than 1/2 of strings y ∈ {0, 1}q(n).

• If x /∈ L, then M(x, y) accepts at most 1/2 of strings y ∈ {0, 1}q(n).

Notice that the definition PP to identical to that of BPP except with a smaller gap between
acceptance and rejection probabilities. Therefore, we have that BPP ⊆ PP. In fact, PP is
powerful enough even to contain NP. To see this, take any NP machine M , and alter it in
the following way. If M(x, y) accepts, then accept. If M(x, y) rejects, then flip an unbiased
coin (to be completely rigorous, one would need to extend the length of the random string
y)—if heads, accept, and if tails, reject. Notice that if there are no accepting y for the original
machine, then the new machine accepts with exactly 50% probability. However, if there is
any accepting y, then the new machine accepts with greater than 50%, and so the inclusion
NP ⊆ PP follows.

Polynomial Space (PSPACE):
Languages L such that there exists a deterministic Turing machine M that uses at most poly-
nomial space and M accepts x iff x ∈ L.

We have that PP ⊆ PSPACE since a PSPACE machine can simply count all the y ∈ {0, 1}q(n)
that make a poly-time Turing machine accept. There are exponentially many such y, but this
is not an issue since we can erase the previous computation as we are enumerating over all
the y.

Exponential Time (EXP):
Languages L such that there exists a deterministic Turing machine M and a polynomial q such
M halts in 2q(n) time and M accepts x iff x ∈ L.

We have that PSPACE ⊆ EXP because a Turing machine that uses polynomial space can only
have exponentially many configurations. And, if you were to reach the same configuration
twice, then you will be in an infinite loop, so you might as well halt.

Figure A.1 shows a summary of how the complexity classes introduced above relate to
each other.
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Figure A.1: Inclusion diagram of classical complexity classes. A is below B if A ⊆ B.
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