CSE 291 / Math 277A - Quantum Complexity Theory October 25, 2022

Lecture 9

Lecturer: Daniel Grier Scribe: Guru Kalyan Jayasingh

1 Warm Up

Let N = 2" and suppose you a have a bit string = x125 ... 2y € {0,1}"V and you want to determine if one
of the bits is 1. How do you phrase this as a query complexity question for a function?

Answer. Define the function f: {0,1}" — {0,1} where f(i) = x;. Here, z; is just the bit of z indexed by
1 where we think of ¢ as a single number written in binary. Therefore, the query problem with an unknown
function translates to one of an unknown bit string. It can sometimes be useful to switch between the two
settings. For instance, the problem defined is the OR function, which is simple to express as x1 VaaV---Vzy.

2 Total vs. Promise Problems

So far, this class has focused on promise problems, where the output is undefined for input that does not
satisfy some property. As we've seen with Simon’s Problem and Forrelation, we can get huge quantum
speedups (as measured by query complexity) for promise problems. Today, we move from promise problems
to problems about total functions, which must be defined over all inputs.

One might wonder why we cannot just take any promise problem for which a quantum computer had
some kind of advantage and extend it to inputs for which it wasn’t previously defined. Unfortunately, the
issue is that we cannot easily detect the inputs for which the original promise held. Since we must be able
to detect those inputs to answer consistently on all inputs, it’s unclear how to make such a strategy work.
If fact, such a strategy provably cannot work:

Theorem 1 (Aaronson, Ben-David, Kothari, and Tal [ABDKT20]). The deterministic query complezity of
a total function is at most the quantum query complexity of that function to the fourth power.

In other words, total functions can only yield polynomial query speedups. It is currently unknown
whether or not this bound is tight.

Today, we will focus on a particularly important total function, the OR function from the intro. While
we know that the quantum query algorithm cannot obtain an exponential speedup, we will see that it can
still get a quadratic speedup. Let’s first look at its classical query complexity. Consider the case where there
is at most one bit that is 1. Any classical deterministic algorithm will need to make N queries since it might
get unlucky and query N — 1 zeroes. Similarly, any classical randomized algorithm will need N/2 queries in
expectation.

Quantumly, however, Grover’s algorithm requires only O(v/N) queries. Although it doesn’t provide an
exponential speedup, the fact that the algorithm can be used for any unstructured search problem makes it
useful for a wide variety of applications.

3 Grover’s Algorithm

Let’s start with a search version of the OR problem: given oracle access to the function f: {0,1}" — {0, 1},
find = € {0,1}" such that f(x) = 1 or report that none exists. Since there is no assumption made on f,
this problem is often called unstructured search. Any x such that f(x) = 1 is called a marked item. It will
turn out that the simplest version of Grover’s algorithm depends on the number of marked items, so let us
assume for now that there is only a single marked item. To be clear, the most general version of Grover’s
algorithm will work regardless of the number of marked items.

The entirety of Grover’s algorithm is simply alternating between the following two operators:

e Phase Oracle: Oy |z) = (=1)F @) |2).
e Diffusion Operator: D := 2 (|u)(u|) — I, where |u) := H®" |0") is the uniform superposition.

The phase oracle Oy comes from the query model, so let’s just check that we can efficiently execute the
diffusion operator:

Claim 1. The diffusion operator D = 2 (|u)(u|) — I is a unitary operation that reflects' about |u). Further-
more, D can be constructed with linearly-many gates in log depth.

Proof. To verify that D is unitary, we can simply compute
DD = (2 (|u){ul) = 1) - (2 (Ju)(u]) = D) = 4 (Ju)(u]) = 2 (ju)(ul) =2 (o) (u]) + T =T

To see why D is a reflection about |u), first notice that we can decompose an arbitrary state |[¢) as its
component aligned with |u) and its component orthogonal to |u).

) = alu) +Blv)

where (ulv) = 0 and |a|? 4+ |3|?> = 1. Then, we can verify

D) = a2 (Ju)(ul) = 1) [u) + B 2 (ju)(ul) = 1) [v) = afu) = Glv) ,

where we use the fact that (u|u) =1 and (ulv) = 0.

To see that D can be constructed with linearly-many gates in log depth, notice that if we conjugate D
by Hadamard, we get the reflection about the all-zeros state: Dy = 2]0™)(0™| — I. Therefore, we just need a
circuit for Dg. On the computational basis states, we have Dg|z) = (—1)*1V""V¥ |z) so we just need to be
able to detect if any of the qubits are 1 (which can be done with a linear-size, log-depth reversible circuit)
and apply a phase gate depending on the answer. O

Algorithm 1 Grover’s algorithm

Input: 2" unknown input bits accessed through the oracle Oy.
Output: s € {0,1}" such that f(s) =1, or null if none exists.
o) = HE™ [07)

s forie{1,...,T} do

[¢i) < DO |¢);

: end for

s* < measurement of |¢)r)

: return s* if f(s*) = 1; otherwise, null

S I N U R

Examining Grover’s algorithm, we see that the final state before we measure is given by
DOf te DOfDOf |u>

To understand why this algorithm works, it will be extremely useful to take a geometric perspective. To
start, notice that our initial state |u) lies in a particular 2-dimensional subspace that is spanned by |s) (our

marked item) and |¥) = \/% >z |%) (the uniform superposition over all unmarked states):
1 1 1 1 1
U) = —— T)=——18) + — T) = §)+1/1——|U).
W= 7) =l + e) = el 1= i)

First, we make the following intriguing observation:

Observation 2. Fach Grover iteration keeps the state in the span of |s) and |).

1By “reflect” about |u), we mean that D flips the sign of every vector in the subspace orthogonal to |u).

o
Proof. This is easy to see for the phase oracle: a|s) + 8 |®) =5 —a|s) + §|¥). For the diffusion operator,
we have

D
als) + B10) = 2u)(ul = D)(als) + B|¥)) = 2(a(uls) + B (u]P)) [u) — als) — B|¥)
but we’ve already seen above that |u) can be expressed a linear combination of |s) and |¥). O

In other words, each Grover operation is a rotation in the plane spanned by |s) and |¥). We have that Oy
reflects about |¥), and the diffusion operation reflects about |u). See Figure 1 and Figure 2 for a visualization
of these rotations.

Is>

Figure 1: Action under phase oracle. Figure 2: Action under diffusion operator.

Let’s see how a sequence of these reflections act on our starting state |u). Intuitively, our starting state
is extremely close to |¥) and we would like to rotate it towards |s). Let 6y be the initial angle between |u)
and |¥). We have?

1 1 1
cos(fy) = (u|¥) = \/; = sin(fp) = T = Oy~ NG

where we have used that sin(z) = = — g—? + “g—? — ... is approximately = for small z. We will see that the
phase oracle and diffusion operator together will rotate our state slightly closer to |s).

Let’s now walk through the action of these two Grover operations. Suppose our state is 6 radians above
the |¥) axis as shown in Figure 1. When we apply the phase oracle, we reflect about |¥), and so our state
is now @ radians below the |¥) axis. When we apply the diffusion operation we reflect back about the |u)
state. Since |u) is 0y radians above the |¥) axis and state started 6 radians below the axis, our reflected
state is 20y + 6 radians above the axis. Figure 2 shows this reflection when 6 = 3. As you can see, while
our state started 6y radians above the axis, it is now 36y radians above the axis.

Repeating this process, the evolution of the angle is given by 6y, 30y, 56, . .., (2T 4+ 1)8,. Notice that we
want to reach the angle 7/2, so we get that we need T =~ 7/(46y) = O(v/2") steps. Of course, this analysis
only holds if there was indeed a marked element. However, after we’ve done this procedure, we measure to
obtain to some candidate marked item s*. We can use one more query to our oracle to check that f(s*) = 1.
This completes the analysis of Grover’s algorithm for a single marked element.

What happens if there are more than 1 marked items? In this case, let |s) be the uniform superposition
over all marked items. If we have m marked elements, then initial angle is (s|u) ~ /m/2" at least when
there aren’t too many marked items (if there are so many marked items, we can just randomly sample until
we find one). Therefore, with the same analysis, the number of queries required to rotate our state to |s) is
O(4/27/m). When we measure, we get a uniformly random marked item. This speedup follows our intuition
that if there are more marked elements, it should be easier to find one of them.

There is one final question to address. Namely, the above analysis only works when we know the number
marked elements. Indeed, if we continue to do more Grover iterations, then then our state continues to
rotate around the unit circle. If the number of marked items is unknown, how do we know when to stop and

2Recall that in Euclidean space the angle § between two complex vectors u and v is given by cos@ = (u - v)/(||ul|||v]])-

measure? The trick is something called “exponential search.” We make the following sequence of guesses for
m: 27,271 9n=2 4 2. Notice that if we make all n possible guesses, then we are at most a factor of 2
off from the true answer. One can check that this does not dramatically affect the analysis. The reason that
the we search in decreasing order is because we want to obtain a speedup in the case that there are actually
many marked items. If at any point we find a marked item, then we stop.

4 Bennett-Bernstein-Brassard-Vazirani (BBBV) lower bound

Grover’s algorithm gives us an efficient O(\/27) quantum query algorithm for the unstructured search prob-
lem. A natural question is whether or not we can do better. In fact, what if only care about the number
of queries our algorithm makes, not necessarily the number of gates in our quantum circuit? Unfortunately,
even under this relaxation we cannot improve upon Grover’s algorithm:

Theorem 3 (Bennett, Bernstein, Brassard, Vazirani [BBBV97]). The quantum query complexity of the OR
problem is Q(v/27).

As we will see later in class, there are actually many possible ways to prove this lower bound, but the
BBBYV lower bound was the first and perhaps most intuitive lower bound technique, so let’s start with that.
First, notice that a generic quantum query algorithm alternates between applying some unitary and applying
the oracle. In other words, after ¢ queries, the state of our system looks like

UOsU_y -+ OfUL O Uy |07) .

To be fully rigorous here, we would also need to specify a set of ancillary workspace qubits, but this will not
change the analysis and only make the notation more cumbersome, so we will drop these extra qubits.

A key point about this decomposition is that the unitaries Uy, Uy, ..., U; are fixed and are independent
of what the oracle does. When there are few oracle queries, our goal will be to show that for every choice
of unitaries, there is some state |y) that always has small amplitude when queried by the oracle. Because of
this, it will be very difficult for the algorithm to “see” whether or not this item is marked. Therefore, we
can fool the algorithm into accepting/rejecting when it shouldn’t.

Let’s first consider what our algorithm does on the constant zero function. In this case, the oracle is just
the identity, and the algorithm should reject. The state of the algorithm after ¢ queries is

) o= UpUpoq - ThUp [07) = Y e |a).
ze{0,1}m

Supposing there are T" total queries, define the quantity

T
My 1= Z |am|2.
t=0

to be the sum of the squares of the magnitudes on z over all states [¢);). We have that

T
2 :221:7’.
t=

T

Z Mg = Z i\amﬁzz Z |t ¢

ze{0,1}" z€{0,1}" t=0 t=0 \ze{0,1}"

Since m, is non-negative, this implies that there must exist some y € {0, 1}" such that m, < T/2" (otherwise,
the sum is greater than T'). This y will be the element that the algorithm fails to properly consider if T
is too small. The above argument gives us a bound on the sum of the squares of the magnitudes for the
input y, but it will turn out that we will actually need a bound on the sum of the magnitudes themselves.
Fortunately, by Cauchy-Schwarz, we have

T

Z |y e| <

t=0

Since we can refer to the all-zeros function as the identity, let f be the function which is 1 on y and 0
elsewhere. Our goal is to distinguish the oracle for f from the oracle for the identity, but for the purposes of
analysis, let’s consider a set of rather strange oracles {O®}L_ . Here, O is defined to be the identity for
the first ¢ queries and f on the remaining T" — ¢ queries. In other words, the oracle is interpolates between
our two function instances. Let’s define the set of states arising from the application of these oracles as

o) := Ur0WUr_1--- OV UL, 0W UG [0") = UrOpUr_1 - O Up1 Oy |iby)

So, for example, we have that [p(7)) = |17) is the state for the complete execution of the quantum algorithm
for the constant 0 function, and [p(?)) is the state for the execution of the quantum algorithm for f.

If we can show that |o(**+D) is close to |@®) for all ¢, then by the triangle inequality, we will be able to
conclude that the states from the two different problem instances are also close to each other. We have the
following:

Dy — [0V = |UrO4Up_1 - - OpUi2Of i) — UrOpUr—_y - O Up 105 [00,) |
= [(UrOsUr—1 -+ OfUp1205Up11) [¢h1) — (UrOpUr—1 - OpUp1)Oy [t01) |
= [[[the) — Oy |n)||

= 2]y 4

where we have used the fact that unitaries preserves the 2-norm and the fact that Oy |¢;) = 1)) — 24 |y).
Combining everything together, we get

T—1 T—1 oT
™) = 1)1 < 3 fl1e") — o) <2 Jay] < —=.
t=0 2n

t=0

Hence, we see that for T < /27, the two states are close under [norm. Next time we will show this
implies that the distribution over outcomes induced by measuring the two states must be statistically close,
implying that the two instances cannot be distinguished by the quantum algorithm (with high probability).

References

[ABDKT20] Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum implications of
Huang’s sensitivity theorem. arXiv:2004.13231, 2020.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510-1523, 1997.

