
CSE 291 / Math 277A - Quantum Complexity Theory October 20, 2022

Lecture 8

Lecturer: Daniel Grier Scribe: Daniel Grier

1 Collision vs Simon’s problem

A function f : {0, 1}n → {0, 1}n is 1-to-1 (also known as injective) if it maps distinct elements in its
domain to distinct elements in its image, or in other words, f(x) = f(y) implies that x = y. We say
that f : {0, 1}n → {0, 1}n is 2-to-1 if every element in its image has exactly two preimages, or in other
words, if f(x) = c, then there is exactly one other y ̸= x such that f(x) = f(y) = c.

Collision:
Oracle: f : {0, 1}n → {0, 1}n
Goal: decide if f is 1-to-1 or 2-to-1, promised that one is true

Question. What’s the quantum query complexity of Collision?

Notice that Collision is a generalization of Simon’s problem, where we have removed the extra condition
that if f(x) = f(y) then x⊕ y = s for some secret string s ∈ {0, 1}n. Can we use the same analysis? Let’s
try the same algorithm and see what happens:

|0n⟩ H⊗n

−−−→ 1√
2n

∑
x∈{0,1}n

|x⟩ Of−−→ 1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ measure−−−−−→

{
|x⟩|c⟩+|y⟩|c⟩√

2
if 2-to-1

|x⟩ |c⟩ if 1-to-1

where c ∈ {0, 1}n is the random outcome obtained by measuring the second register. So, dropping the
measured register we just have to decide if we are given a superposition of basis states (x and y) or just
a single basis state (x). Should such a task be easy? If we had a few copies of the state, then yes! Just
measure each copy. When the function is 2-to-1, then we will see both x and y with high probability and so
we know that there are multiple inputs that correspond to the outcome c. If the function were 1-to-1, then
we would only see the single basis state x.

Of course, we don’t actually have multiple copies of the state. We only have 1. What’s worse, if we try
to perform the same sequence of steps from the beginning, we measure the same c with exponentially small
probability, and it’s very unclear what information you would get until you measure the same outcome twice
(i.e., see a collision). Moreover, the same picture holds if we follow the outline of Simon’s algorithm and
proceed to apply another layer of Hadamard gates. We seem to be stuck, which is good because. . .

Theorem 1 (Shi [Shi02]). The quantum query complexity of Collision is at least Ω(2n/3).

This reinforces our intuition that quantum computation is quite subtle, and to obtain a quantum speedup,
the problem we are trying to solve requires some kind of structure that the quantum computer can take
advantage of. Notice however, that it seems like we are actually getting a small improvement here over the
O(2n/2) classical randomized algorithm (which, once again, relies on the Birthday Paradox to see a collision).
Indeed, there is a quantum algorithm that matches the lower bound of Shi.

Theorem 2 (Brassard, Høyer, and Tapp [BHT97]). The quantum query complexity of Collision is O(2n/3).

We will see how to prove this later.

2 Forrelation

In the last lecture, we saw Simon’s problem, which required Ω(2n/2) classical queries to solve (even with
randomized algorithms), but only required O(n) queries to solve quantumly. How far can we push these
types of separations?

1

Question. What is the largest separation between quantum and classical computers as measured by query
complexity?

Here’s one possible approach: take the standard quantum algorithm we’ve used for the past few problems
(e.g., Deutsch-Jozsa, Berstein-Vazirani, and Simon’s problems) and define a problem based on that. To be
clear, this algorithm is simply 1) start in the all-zeros state 2) apply a layer of Hadamard gates 3) apply
the oracle 4) apply another layer of Hadamard gates 5) measure. Before we measure, the state looks like
H⊗nOfH

⊗n |0n⟩. Moreover, we’re usually only concerned about the amplitude on a particular state. Let Π
be the projector onto that state (e.g., in Deutsch-Jozsa, we have Π = |0n⟩⟨0n|). In other words, the relevant
probability is

⟨0n|H⊗nOfH
⊗n ΠH⊗nOfH

⊗n |0n⟩

To define a problem based on the above quantity, we ask: promised that this quantity is either small or
large, decide which is the case. While this would define a problem which is hard for classical computers,
there is another choice which is has a bit more nice mathematical structure, which is related to the Boolean
Fourier transform.

For any Boolean functions1 f, g : {0, 1}n → {±1}, define their forrelation as

ϕf,g := ⟨0n|H⊗nOgH
⊗nOfH

⊗n |0n⟩

Actually, this is not the standard way to define the forrelation. As we will see, this quantity is equal to the
correlation between one function and the Fourier transform to another:

Claim 3. ϕf,g = 1
23n/2

∑
x,y∈{0,1}n f(x)(−1)x·yg(y)

Proof.

|0n⟩ H⊗n

−−−→ 1√
2n

∑
x∈{0,1}n

|x⟩ Of−−→ 1√
2n

∑
x∈{0,1}n

f(x) |x⟩ H⊗n

−−−→ 1

2n

∑
x,y∈{0,1}n

f(x)(−1)x·y |y⟩

Og−−→ 1

2n

∑
x,y∈{0,1}n

f(x)(−1)x·yg(y) |y⟩ H⊗n

−−−→ 1

23n/2

∑
x,y,z∈{0,1}n

f(x)(−1)x·yg(y)(−1)y·z |z⟩

⟨0n|−−→ 1

23n/2

∑
x,y∈{0,1}n

f(x)(−1)x·yg(y)

So we know that |ϕf,g|2 can be estimated using a two-query quantum algorithm (repeat the sequence of
operations in Claim 3 and compute the percentage of runs where you measure the all-zeros state). We’re
now ready to define the forrelation problem:

Forrelation:
Oracle: f, g : {0, 1}n → {±1}
Goal: decide if |ϕf,g|2 ≥ 2/3 or |ϕ2f,g| ≤ 1/3 promised that one is true

Unfortunately, proving a randomized classical lower bound is quite challenging, but nevertheless one can
show that getting more than a quadratic speedup over the naive algorithm is impossible classically:

Theorem 4 (Aaronson and Ambainis [AA15]). The classical randomized query complexity of Forrelation
is at least Ω̃(2n/2).

This gives us a 2 vs 2n/2 separation. While nice, it feels like we’ve lost something from our original
idea of using a generic quantum algorithm at the beginning of lecture. Namely, we started with a 1-query
algorithm and ended with a 2-query algorithm by generalizing it to have this Fourier structure. Can we
compute forrelation with a single query? It turns out that we can. First, we need to combine both functions

1For the most part in this class, we’ve consider Boolean functions where the image is in {0, 1}. We switch to {±1} since it
is more standard in the Boolean Fourier analysis literature. As we will see, it makes some equations easier to write.

2

f, g into a single function. This is actually quite simple, since we can design an (n+ 1)-bit controlled-(f, g)
gate. If the first bit of the input is 1, apply f ; otherwise, apply g. Still, it’s a bit unclear how to adapt
the original algorithm to this new oracle. The claim is that we measure 0 on the first qubit of the following
circuit with probability

1+ϕf,g

2 :

|+⟩ H

|0⟩

H⊗n Of/g H⊗n
...

|0⟩

Analyzing the circuit layer-by-layer, we have (dropping n from everything for clarity):

|+⟩ |0⟩ → |0⟩+ |1⟩√
2

H |0⟩ → |0⟩OgH |0⟩+ |1⟩OfH |0⟩√
2

→ |0⟩OgH |0⟩+ |1⟩HOfH |0⟩√
2

→ (|0⟩+ |1⟩)OgH |0⟩+ (|0⟩ − |1⟩)HOfH |0⟩
2

Recall that the probability we measure 0 is equal to the ℓ2-norm of the vector after we project the first qubit
onto the 0 state. In our case, the projection leaves us with the state:

OgH +HOfH

2
|0⟩ ,

so, using the fact that all the individual matrices above are Hermitian, the probability we measure 0 is

⟨0|
(
HOg +HOfH

2

)(
OgH +HOfH

2

)
|0⟩ = 1 + ϕf,g

2

where we’ve used H2 = O2
f = O2

g = I and the definition of forrelation.
Using the above construction, we can give a (slightly different) version of the forrelation problem which

only requires 1 quantum query to solve, but nevertheless require Ω̃(2n/2) classical randomized queries. Un-
fortunately, this is as far as we can push separations based on the forrelation problem. What happens if we
move to a setting which require more quantum queries? To do this we will need to generalize forrelation.

3 k-fold forrelation

The k-fold forrelation generalizes the original forrelation from 2 oracle function calls to k calls:

ϕ(f1, f2, . . . , fk) = ⟨0n|H⊗nOfkH
⊗n · · ·H⊗nOf1H

⊗n |0n⟩

for functions f1, . . . , fk : {0, 1}n → {±1}. Once again, the k-fold forrelation problem asks whether or not
|ϕ(f1, f2, . . . , fk)|2 is greater than 2/3 or smaller than 1/3. Much like the original “2-fold forrelation” problem
could be solved with one quantum query, the k-fold forrelation problem can be solved with ⌈k/2⌉ queries
using the exact same proof idea.

Determining a lower bound on the randomized classical query complexity of k-fold forrelation remained
elusive until it was settled by Bansal and Sinha:

Theorem 5 (Bansal and Sinha [BS21]). The k-fold forrelation problem has randomized classical query
complexity at least Ω̃(2n(1−1/k)).

Independently, a similar lower bound was shown for a slightly different problem by Sherstov, Storozhenko,
and Wu [SSW21]. Notice that when k = 2, we recover the Ω̃(

√
2n) lower bound of Aaronson and Ambainis

for Forrelation.
For this rest of this lecture, we will show that this is the best possible separation. There is a classical

randomized algorithm that can solve k-fold forrelation with roughly 2n(1−1/k) queries. In fact, we will show
something slightly more general:

3

Theorem 6 (Bravyi, Gosset, Grier, Schaeffer [BGGS21]). Every quantum algorithm that makes t queries
can be simulated by a classical randomized algorithm that makes Õ(2n(1−1/2t)) queries.

Recall that k-fold forrelation can be solved with ⌈k/2⌉ quantum queries, so this also gives an optimal
algorithm for k-forrelation by setting t = ⌈k/2⌉.

The first question we need to ask is how to get a handle on an arbitrary quantum query algorithm. To
do this, let’s make some assumptions about how the quantum algorithm works. First, let’s assume that we
have a single oracle O. If we have multiple oracles (as in the k-fold forrelation problem), we can combine
them into a single oracle that has a control register that determines which oracle is applied. Second, let’s
assume that the quantum algorithm does not use any ancillary qubits. This will simply make the equations
a bit simpler to write, but nothing will break by allowing ancillas. Finally, let’s assume only gates with
real (rather than complex) entries are used. We’ve seen before that this does not change the computational
power of the circuit. Therefore, before measurement we can represent the state of the quantum algorithm as

|ψ⟩ := UtOUt−1 · · ·U1OU0 |0n⟩ .

That is, apply an arbitrary unitary, query the oracle, apply another arbitrary oracle, and so on. As we saw
earlier for our general 1-query quantum algorithm, we are concerned with the probability on some subset of
states specified by a projector Π. We are therefore interested in estimating the quantity

⟨ψ|Π |ψ⟩ = ⟨0n|U†
0OU

†
1 · · · OU

†
t ΠUtO · · ·U1OU0 |0n⟩ .

To reiterate, if a classical algorithm can estimate ⟨ψ|Π |ψ⟩ to a high accuracy, then it will be able to
distinguish between the case where the probability of acceptance of the quantum algorithm is large (say
greater than 2/3) or small (smaller than 1/3), and so it can solve the same problem that the quantum
algorithm was solving. More generally, we will give a classical algorithm to estimate quantities that look like

q := ⟨0n|M2tO · · ·M1OM0 |0n⟩

where the Mi are arbitrary linear operators that have bounded norm ∥Mi∥ ≤ 1 (i.e., the magnitude of the
largest eigenvector is bounded by 1). In particular, moving to arbitrary linear operators like this (instead of

just unitary operators) allows us to handle the U†
t ΠUt term in the expansion of ⟨ψ|Π |ψ⟩.

Our goal will be design an estimator q̂ for q such that E[q̂] = q and Var[q̂] ≤ ϵ2/100. If we can do this,
then by Chebyshev’s inequality2 we have Pr[|q̂ − q| ≥ ϵ] ≤ 1/100. So, setting ϵ to a small constant, this
implies that our estimator q̂ is good enough to determine the true acceptance probability of the original
quantum algorithm (at least with high probability, which is all we care about since this is a randomized
algorithm).

To do this, we create a sequence of estimators |ψ0⟩ , |ψ1⟩ , . . . , |ψ2t⟩ where |ψr⟩ is a classical representation
of the state of the computation after r queries:

E[|ψr⟩] =MrO · · ·M1OM0 |0n⟩

We design the estimators adaptively, starting by setting |ψ0⟩ = M0 |0n⟩. Given our estimate |ψr−1⟩ we
construct |ψr⟩ by sampling from the distribution of outcomes that arise from measuring the possibly unnor-
malized state |ψr−1⟩. To this end, let’s define a distribution

pr(z) :=
| ⟨z|ψr⟩ |2

⟨ψr|ψr⟩

over bit strings z ∈ {0, 1}n that captures the probability of measuring the rth estimator. Since |ψr⟩ might
not have norm 1, we must divide by ⟨ψr|ψr⟩ to guarantee that pr is a valid probability distribution.

2Chebyshev’s inequality states that for random variable X, we have

Pr [|X − E[X]| ≥ ϵ] ≤
Var[X]

ϵ2

4

Concretely, to generate the next state estimator we sample L strings z1, . . . , zL independently from the
previous estimator:

|ψr⟩ :=MrO

(
1

L

L∑
i=1

|zi⟩⟨zi|
pr−1(zi)

)
|ψr−1⟩

Intuitively, we are weighting our next estimator towards the basis states that have higher probability in the
previous state. A key question is: why can we simulate this classically? First, it’s important to recall that
we are only keeping track of the number of classical queries that our algorithm makes, so in particular we
can represent the state |ψr⟩ as a giant 2n-size vector. Furthermore, the Mr terms are known in advance
(since they are derived from the quantum circuit), and so we can simulate them just by matrix-vector
multiplication. Finally, since we have projected our state onto L basis states, to apply Of , we only need
to know what that oracle does to those L states. Of course, the larger we make L, the more accurate our
estimator will be. However, increasing L means that we are increasing the number of classical queries per
round, which we are trying to keep low. For now, let’s just keep L as a variable. We will minimize it later.

Let’s now see why our construction of |ψr⟩ gives us a good estimator for our state. By linearity of
expectation, it will suffice to analyze a single projection term:

E
[
|zi⟩⟨zi|
pr−1(zi)

]
=

∑
z∈{0,1}n

|z⟩⟨z|
pr−1(z)

· pr−1(z) =
∑

z∈{0,1}n

|z⟩⟨z| = I,

and so we have

E[|ψr⟩] =MrO

(
1

L

L∑
i=1

E
[
|zi⟩⟨zi|
pr−1(zi)

])
|ψr−1⟩ =MrO |ψr−1⟩

as desired. To avoid clutter in the equation, we have avoided explicitly specifying what the expectation
is over in the equations. In this particular equation, the expectation is just over the randomness used to
sample the zi from pr−1. Given this state estimator, we can easily define an estimator for the acceptance
probability of the entire quantum algorithm:

qr := ⟨0n|M2tO · · ·Mr+1O |ψr⟩

represents the acceptance probability of the algorithm after r queries using the rth state estimator. Notice
that q0 = q is the true acceptance probability of the quantum algorithm, and q̂ := q2t is our estimate of
this acceptance probability after 2t rounds of sampling bit strings. To reiterate, q2t is something that we
have computed classically, while q0 is just a quantity that we will use in our analysis (it is not known to the
classical algorithm). Our goal will be to show a type of hybrid argument. Namely, we will show that qr is
close enough to qr−1 so that adding up all the differences between q2t and q0 is still small.

From the expectation calculation for each of our state estimators, we have

E[qr] = ⟨0n|M2tO · · ·Mr+1OE[|ψr⟩] = ⟨0n|M2tO · · ·Mr+1OMrO · · ·OM0 |0n⟩ = q

where the expectation is over all of the randomness used so far during the computation. For now let us
simply state what the variance is and we will prove it later:

Lemma 7.

Var[qr] ≤ 2−n

(
1 +

2n

L

)r

To complete the proof of Theorem 6, recall that we need that Var[q̂] = Var[q2t] ≤ ϵ2/100 to apply
Chebyshev’s inequality. In other words, we get a sufficiently accurate randomized algorithm whenever the
following holds:

2−n

(
1 +

2n

L

)2t

≤ ϵ2

100

Solving for L shows that L = O(ϵ−1/t2n(1−
1
2t)) queries in each round are sufficient for a small variance. Since

there are 2t many rounds, we get that there are O(tϵ−1/t2n(1−
1
2t)) total queries in the randomized algorithm,

which finishes the proof.

5

proof of Lemma 7: Recall that for random variable X, we have Var[X] = E[X2]−E[X]2. Therefore, we will
need to compute

E[q2r] = E[qrq∗r] = ⟨0n|M2tO · · ·OMr+1 |ψr⟩⟨ψr|M†
r+1O · · ·OM†

2t |0n⟩

where the first equality follows from the fact that the quantum computation only uses real numbers. This
necessitates the following computation:

E[|ψr⟩⟨ψr|] =MrO

 1

L2

L∑
i,j=1

E
[
|zi⟩⟨zi|
pr−1(zi)

|ψr−1⟩⟨ψr−1|
|zj⟩⟨zj |
pr−1(zj)

]OM†
r .

There are two cases to consider for the inner expectation. If i ̸= j, then samples zi and zj are independent,
and so we just get the expectation of each term, which we previously calculated to be the identity:

E
[
|zi⟩⟨zi|
pr−1(zi)

|ψr−1⟩⟨ψr−1|
|zj⟩⟨zj |
pr−1(zj)

]
= E

[
|zi⟩⟨zi|
pr−1(zi)

]
|ψr−1⟩⟨ψr−1|E

[
|zj⟩⟨zj |
pr−1(zj)

]
= |ψr−1⟩⟨ψr−1|

If i = j, we get

E
[
|zi⟩⟨zi|
pr−1(zi)

|ψr−1⟩⟨ψr−1|
|zi⟩⟨zi|
pr−1(zi)

]
=

∑
z∈{0,1}n

(
|z⟩⟨z|
pr−1(z)

|ψr−1⟩⟨ψr−1|
|z⟩⟨z|
pr−1(z)

)
pr−1(z)

=
∑

z∈{0,1}n

|z⟩ ⟨z|ψr−1⟩ ⟨ψr−1|z⟩ ⟨z|
pr−1(z)

= ⟨ψr−1|ψr−1⟩
∑

z∈{0,1}n

|z⟩⟨z|

= ⟨ψr−1|ψr−1⟩I

Given that there are L terms with i = j and L2 − L terms with i ̸= j, we get

E[|ψr⟩⟨ψr|] =
L− 1

L
MrO |ψr−1⟩⟨ψr−1| OM†

r +
⟨ψr−1|ψr−1⟩

L
MrM

†
r

Putting everything together, we have

E[q2r] =
L− 1

L
qr−1 +

⟨ψr−1|ψr−1⟩
L

⟨0n|M2tO · · ·OMr+1MrM
†
rM

†
r+1O · · ·OM†

2t |0n⟩

≤ q2r−1 +
⟨ψr−1|ψr−1⟩

L

where we have used that the Mi terms cannot increase the ℓ2 norm (i.e., ∥Mi∥ ≤ 1). Evidently, to compute
the expectation of q2r , we need a bound on the magnitude of the |ψr⟩ states. Fortunately, this can easily be
computed as

E[⟨ψr|ψr⟩] = tr (E[|ψr⟩⟨ψr|]) ≤
(
1 +

2n

L

)
⟨ψr−1|ψr−1⟩

reusing our computation of E[|ψr⟩⟨ψr|] above (and once again relying on the fact that ∥Mr∥ ≤ 1). Now we
recursively apply this identity in our equation for E[q2r] to obtain

E[q2r]− E[q2r−1] ≤
1

L

(
1 +

2n

L

)r−1

where the expectations are over all the randomness used in the algorithm.
We are now finally in a position to apply our hybrid argument to bound the variance:

Var[qr] = E[q2r]− E[qr]2 = E[q2r]− E[q20] ≤
r∑

i=1

(
E[q2i]− E[q2i−1]

)
=

1

L

r−1∑
i=0

(
1 +

2n

L

)i

6

where we’ve used that E[qr]2 = q2 = q20 = E[q20]. To bound the right hand side of the equation, we note that

it just a geometric series
∑r−1

i=0 g
i = gr−1

g−1 with common ratio g :=
(
1 + 2n

L

)
. We get

Var[qr] ≤ 2−n

((
1 +

2n

L

)r

− 1

)
≤ 2−n

(
1 +

2n

L

)r

,

completing the proof.

References

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quantum
from classical computing. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 307–316, 2015.

[BGGS21] Sergey Bravyi, David Gosset, Daniel Grier, and Luke Schaeffer. Classical algorithms for forrela-
tion. arXiv preprint arXiv:2102.06963, 2021.

[BHT97] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem.
arXiv quant-ph/9705002, 1997.

[BS21] Nikhil Bansal and Makrand Sinha. k-forrelation optimally separates quantum and classical query
complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 1303–1316, 2021.

[Shi02] Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems. In
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
pages 513–519. IEEE, 2002.

[SSW21] Alexander A Sherstov, Andrey A Storozhenko, and Pei Wu. An optimal separation of randomized
and quantum query complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 1289–1302, 2021.

7

