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1 Warm up

Suppose we have an n-qubit quantum circuit construction from poly(n) Toffoli gates and log(n) Hadamard
gates. What is the smallest classical class that can simulate these circuits?

Observation 1. Thinking about the Feynman paths/trees from lecture 6, we can imagine a similar tree being
constructed based on the circuit’s computation. Each Hadamard gate makes the tree split into two branches
and the Toffoli gate does not create any split. How many branches of the tree will there be?

Call this class ξ, we can show that ξ ⊆ P. Since each Toffoli gate can be simulated classically with
at most a polynomial slowdown, the only thing we need to take care of is the number of “branches” our
computation tree will have. Since we know there will be at most log(n) Hadamard gates, there will at most
be that many amount of splits in our computation. Thus there will be a polynomial amount of splits in the
tree (2logn = n), and combined with the fact that the Toffoli gates will keep the tree in poly-depth, searching
through such a tree will still be polynomial time.

Observation 2. This is still true if we relax the definition and allow for any classical gate (not just Toffoli
gates) and any single-qubit gate (not just Hadamard). Notice that these transformations will only affect the
amplitudes, and not change the size of the tree. The different amplitudes can be kept track of as we traverse
the tree.

2 Quantum Algorithms cont.

In the last lecture we were introduced to Deutsch’s algorithm which, from the standpoint of query complexity,
allowed us to beat any classical algorithm by a constant number of queries (minimum of 2 queries for classical
vs 1 query for quantum). Now we will explore some other promise problems, and see how quantum algorithms
compare to classical ones. All of the following problems will be called “promise problems”: ones in which
there is some guarantee (or “promise”) that the input will be of some structure.

2.1 Deutsch-Jozsa problem

Here we are given a function f : {0, 1}n → {0, 1} and want to know is the function constant (∀x, y we have
that f(x) = f(y)) or is the function “balanced” (where half of the inputs are evaluated to 0 and the other 1)?

Classically:
Deterministically, we require 2n−1 +1 queries that need to be made to f before we can know for certain. In
the worst case all of our previous queries would be the same value until our

(
2n−1 + 1

)
’th query.

Quantum:
Let us describe the algorithm step-by-step, as well as write out mathematically what is going on with our
state.

1. Start with the state |0⟩⊗n and apply a layer of Hadamard gates:

|0⟩⊗n H⊗n

−−→
1√
2n

∑
x∈{0,1}n

|x⟩
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2. Now let’s apply the phase oracle:

1√
2n

∑
x∈{0,1}n

|x⟩ phase
−−−→

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩

3. And apply Hadamards again:

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩ H⊗n

−−→
1

2n

∑
x,y∈{0,1}n

(−1)f(x)+x·y|y⟩

Note that · represents the inner product between x and y by viewing them as binary vectors. To
see why this is true, we remark that the result of applying an n-fold Hadamard gate on an arbitrary
classical state |x⟩ can be written as

H⊗n |x⟩ =
n⊗

i=1

(|0⟩+ (−1)xi |1⟩) =
n⊗

i=1

(
(−1)xi·0 |0⟩+ (−1)xi·1 |1⟩

)
=

n⊗
i=1

 ∑
yi∈{0,1}

(−1)xi·yi |yi⟩

 =
∑

y∈{0,1}n

(−1)
∑n

i=1 xi·yi · |y⟩ .

Observation 3. Lets look at the specific case where the state |y⟩ = |00 . . . 0⟩ (the all-zeros state). Note that
In this case x · y = 0, so the above state in step 3 becomes:

1

2n

∑
x∈{0,1}n

(−1)f(x)|y⟩

Now if the function were constant, then we f(x) = c for some constant c ∈ {0, 1}, and:

1

2n

∑
x∈{0,1}n

(−1)c|y⟩ = (−1)c2n

2n
|00 . . . 0⟩ = ±|00 . . . 0⟩

This requires the amplitude of the all-zeros state to be ±1, or in other words, if we were to measure the
state, then we would observe the all-zeros state with probability 1.

Observation 4. What about the case where f is balanced? Again looking at the all-zeros state from obser-
vation 3, notice that the balance for f would result in the amplitudes canceling each other out. This implies
that if the function were balanced, then we will measure the all-zeros state with probability 0.

In summary, we would be able to tell if the function f were constant for balanced by seeing if we observe
the all-zeros state. If we do, then it implies the function is constant, if we don’t then the function is balanced.

Some additional notes/comments:

• Strictly speaking, if we wanted this to be a BQP algorithm, we can only measure a single bit. To do
this, we can simply OR all the bits together and output it to a single register which we measure.

• For a classical model, if we allow the queries to be random, then we only need a constant number of
queries to determine whether or not the function is constant or balanced. (The algorithm would be to
uniformly draw x and query f(x), and see if we can some queries that are different. We can bound the
probability of error by a Chernoff bound.)

Due to the specific problem, it seems like if we allow randomness then asymptotically we aren’t doing
better with quantum algorithms.
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2.2 Berstein-Vazirani problem

Again this will be a promise problem. Here we are given a function f : {0, 1}n → {0, 1} of the form f(x) = x·s
(where s ∈ {0, 1}n constant for all x and · is the inner product). Our goal is to find s. The promise here is
that the given input function needs to be of that specific form f(x) = x · s.

Classically:
Deterministically, we are bounded by n queries. One way to reason about this is that we can first query
x1 = 100 · · · 0 to find the first bit of s, then x2 = 0100 · · · 0 to find the second bit, and so on and so forth
to find all n bits of s in n queries. We can not do any better than n queries since if we think about this
problem as solving a system of linear equations with n unknowns (bits), then we will at minimum need n
equations which correspond to n queries. In this case, randomness does not help us.

Quantum:
Let us describe the algorithm step-by-step, as well as write our mathematically what is going on with our
state. The algorithm is the same as the one for the Deutsch-Jozsa problem!

1. Start with the state |0⟩⊗n and apply a layer of Hadamard gates:

|0⟩⊗n H⊗n

−−→
1√
2n

∑
x∈{0,1}n

|x⟩

2. Now let’s apply the phase oracle:

1√
2n

∑
x∈{0,1}n

|x⟩ phase
−−−→

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩

3. And apply Hadamards again:

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x⟩ H⊗n

−−→
1

2n

∑
x,y∈{0,1}n

(−1)f(x)+x·y|y⟩

(Again, · represents the inner product between x and y.) Note that substituting the function f(x) = x·s
gives us: (where the xor comes since we are working with binary vectors appearing as the power of
−1)

1

2n

∑
x,y∈{0,1}n

(−1)x·s+x·y|y⟩ = 1

2n

∑
x,y∈{0,1}n

(−1)x(s⊕y)|y⟩

Observation 5. If we look at the case where the state |y⟩ = s, then the term (−1)x(s⊕y) = 1 for all x (since
the exponent will be 0), and thus the sum over all states would give you a probability of seeing state |y⟩ = s
is equal to 1.

Remark 6. While this does give us a better separation between what is possible with quantum algorithms
(at least asymptotically), this problem isn’t technically in BQP since this is a search problem (looking for a
specific s) rather than a decision problem where you simply output yes/no.

2.3 Simon’s problem

This problem problem is that you are given a function f : {0, 1}n → {0, 1}n, and the promise that f(x) =
f(y) iff x = y ⊕ s for some s ∈ {0, 1}n that is constant for the function. Our goal is to find s.

Classically:
We wish to find some collision of x and y such that f(x) = f(y), and be able to find s. Deterministically,
we can’t do any better than trying an exponential Ω(2n) amount of pairs x, y in hopes of finding a collision.
If we have access to randomness, then uniformly picking pairs x, y we can expect to find a collision in an
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expected Θ(
√
2n) queries via the birthday paradox (also called balls and bins bound).

Quantum:
Let us describe the algorithm step-by-step, as well as write out mathematically what is going on with our
state. The algorithm is similar but not quite the same as our previous two.

1. Start with the |0⟩⊗n and apply a layer of Hadamard gates.

|0⟩⊗n H⊗n

−−→
1√
2n

∑
x∈{0,1}n

|x⟩.

2. Now let’s apply the standard oracle into an ancilla register:

1√
2n

∑
x∈{0,1}n

|x⟩ |0⟩ standard oracle−−−−−−−−−−−→
1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩

3. Now we measure the bits containing the value for f(x). The idea is that after measurement, the states
collapse to the superposition of |x′⟩, |x⟩ that satisfy the x′ = x⊕ s for some unknown s. The resulting
state would be:

|x⟩+ |x⊕ s⟩√
2

4. Applying another Hadamard gives us:

|x⟩+ |x⊕ s⟩√
2

H⊗n

−−→
1√
2n+1

∑
y

(
(−1)x·y + (−1)y·(x⊕s)

)
|y⟩

5. From here if we measure y in the computational basis, note that the probabilities will be non-zero and
add up constructively when the exponents align: y · x = y · s+ x · y. We can rewrite this as 0 = y · s.

Observation 7. Since we are guaranteed to measure some state |y⟩ such that y · s = 0, we will need O(n)
additional queries to know what s is. The reason the bound is not exactly n is because (thinking back to
solving a system of linear equations to find the secret s using queries) some of our queries to our oracle may
result in equations that are linearly dependent.

Remark 8. We finally have a problem in which quantum computers are getting an exponential advantage
over classical computers (n vs 2n/2 queries). In fact, this problem is the building block and motivation for
Shor’s algorithm for factoring integers, which can be reduced to a “period finding” algorithm that Simon’s
problem can be related to.
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