
CSE 291 / Math 277A - Quantum Complexity Theory November 1, 2022

Lecture 11

Lecturer: Daniel Grier Scribe: Yiyang Qiu

1 Warm-up: Element Distinctness

Recall the collision problem and a new promise-free version called “element distinctness”:

Collision:
Oracle: f : {0, 1}n → {0, 1}n
Promise: f is either 1-to-1 or 2-to-1
Goal: Decide which

Element Distinctness:
Oracle: f : {0, 1}n → {0, 1}n
Goal: Decide whether f is 1-to-1 or not.

In other words, the element distinctness question can be phrased as “Is every element in the image of
f distinct (i.e., f is 1-to-1), or are there are pair of distinct inputs x, y such that f(x) = f(y)?” Proving a
quantum query lower bound from scratch for element distinctness is quite challenging, but suppose we knew
the following lower bound for the collision problem:

Theorem 1 ([Shi02]). The quantum query complexity of Collision is Ω(2n/3).

Our goal will be to reduce the collision problem to the element distinctness problem, so that a lower
bound for element distinctness will imply a lower bound for collision.

Theorem 2. The quantum query complexity of Element Distinctness is Ω(22n/3).

Proof. Suppose there is a quantum query algorithm for Element Distinctness with o(22n/3) queries. We
claim that this implies a quantum query algorithm for Collision with o(2n/3) queries, contradicting the
lower bound of Shi (Theorem 1).

Therefore, suppose we have some instance f of Collison. Sample a random subset of the domain
R ⊂ {0, 1}n of size |R| = 2n/2. By the Birthday Paradox, with high probability, there exists x, y ∈ R such
that f(x) = f(y) if f is 2-to-1. Now run the Element Distinctness algorithm with f restricted to the subset
R to determine whether a collision exists, which then implies whether f is 2-to-1 or 1-to-1. The query
complexity of the algorithm is then o((2n/2)2/3) = o(2n/3). We conclude that any quantum query algorithm

for Element Distinctness must make Ω(2
2n
3) oracle queries.

2 Pros and Cons of Query Complexity

The quantum query complexity of a function measures the number of queries that are made to the function
in order to determine some property of the function. There are pros and cons to this approach:
Pros:

1. We can actually prove rigorous lower bounds using query complexity, e.g. BBBV theorem, Reduction,
Polynomial Method, Adversary. Using query complexity method, we can also prove quantum advantage
of some quantum algorithms.

2. Query algorithms are the foundations for useful quantum algorithms, e.g. Grover’s algorithm, and
Simon’s Algorithm.

Cons:

1. It is not always reasonable to model functions as a black box. The conclusions implied by query
complexity analysis do not necessarily generalize to the non-black box setting.

Next we will attempt to get over this con. In other word, we would try to avoid black box function in
our query complexity model. In the pursuit of this goal, we will sacrifice Pro 2. First, we will take a pretty
significant detour...

1

3 Clifford Circuits

First, a simple gate-based definition:

Definition 3. A Clifford circuit is constructed by composing any number of controlled-not (CNOT), Had-
mard (H), and Phase (S) gates. The set of all unitaries that arise from Clifford circuits is called the Clifford
group. A Cifford state is obtained by applying a Clifford circuit to the all-zeros state.

To recap, the fundamental Clifford gates are

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
.

We have seen throughout class that Clifford circuits have been important subroutines in many quantum
algorithms. We will see later that Clifford circuits can be used to show some type of quantum advantage.
For the moment, however, we begin with a somewhat surprising theorem that shows that Clifford circuits
can be simulated in polynomial time on a classical computer.

Theorem 4 (Gottesman–Knill [Got98]). Clifford circuits can be efficiently simulated by a classical computer.

There are several possible proofs for the Gottesman-Knill theorem, each of which reveals some useful
structure within the Clifford group. Furthermore, while each proof results in a polynomial-time simulation
algorithm for Clifford circuit simulation, the exact exponent of the polynomial depends on the specific
representation that is used.

Let us start with what might be called the “straightforward” method of simulation. Namely, we will keep
track of the state vector of the quantum state as we apply each Clifford gate in the circuit. Of course, we
can’t write out the entire state vector, as this would require exponential space. It turns out, however, that
Clifford states have the following special form:

Lemma 5. [DM03, VDN10] Every n-qubit Clifford state can be written as

|ψ⟩ = 1√
|A|

∑
x∈A

(−1)q(x)iℓ(x) |x⟩

where

• A is an affine space: A = {My + b (mod 2) | y ∈ {0, 1}r} for M ∈ {0, 1}n×r and b ∈ {0, 1}n.

• q(x) is a quadratic form: q(x) =
∑
i<j qijxixj with qij ∈ {0, 1}.

• ℓ(x) is a linear form: ℓ(x) =
∑
i ℓixi with ℓi ∈ {0, 1, 2, 3}.

The natural proof of this statement also gives a classical simulation algorithm. That is, starting with the
all-zeroes state (which is trivially of the above form), show how it evolves under the application of each one
of the fundamental Clifford operations (CNOT , H, or S). Since each update to the state takes polynomial
time, the entire computation will take polynomial time. By induction, we need to understand the following
cases:

• Apply S on qubit i:

S |ψ⟩ = 1√
|A|

∑
x∈A

(−1)q(x)iℓ(x)S |x⟩ = 1√
|A|

∑
x∈A

(−1)q(x)iℓ(x)ixi |x⟩

In other words, if we let ℓ′(x) = l(x) + xi, then we have an updated representation of the state with
Affine space A, quadratic form q(x), and linear form ℓ′(x).

2

• Apply CNOT from qubit i to qubit j:

CNOT |ψ⟩ = 1√
|A|

∑
x∈A

(−1)q(x)iℓ(x) CNOT |x⟩ = 1√
|A|

∑
x∈A

(−1)q(x)iℓ(x) |CNOTx⟩

where the last equation reflects the fact that CNOT can be identified with an n × n Boolean matrix
which XOR’s the ith bit into the jth bit of the n-bit vector x. Therefore, we now have

– Affine space: A′ = {M ′y + b′ | ∀y ∈ {0, 1}n for M ′ = CNOTM and b′ = CNOT b.

– Quadratic form: Notice that we can write q(x) = xTQx for some upper triangular matrix Q.
Therefore, the updated quadratic form can be written as q′(x) = q(CNOTx) = xTQ′x with
Q′ = CNOTQCNOT.

– Linear form: Similar to above, we can write ℓ(x) = ℓTx for the vector ℓ = (ℓ1, . . . , ℓn). Therefore,
the updated linear form can be written as ℓ′(x) = ℓ(CNOTx) = (ℓ′)Tx where (ℓ′)T = ℓT CNOT.

• Apply H: The proof for applying H is nontrivial, so we leave it for now. See proof in [VDN10].

In conclusion every Clifford state |ψ⟩ can be written of the form in Lemma 5. Furthermore, the inductive
proof reveals a simple algorithm to compute A, ℓ, q of a state given the sequence of Clifford gates that
construct the state.

4 Heisenberg Picture

In the Heisenberg picture of simulation [Got98], we do not represent the quantum state by its state vector,
but rather as a list of “stabilizers” of the state, i.e., unitary matrices for which the original state vector is an
eigenvector. It will turn out that this is a particularly useful representation for states generated by a Clifford
circuits. Before we do this, however, let us describe a important subgroup of the Clifford group called the
Pauli group that will be the basis of this representation.

4.1 Pauli Group

The single-qubit Pauli group is generated by Pauli matrices, which are:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
The Pauli matrices also have a bunch of nice properties (I is the 2× 2 identity matrix):

• Hermitian: X = X†, Y = Y †, Z = Z†

• Square to the identity: X2 = Y 2 = Z2 = I

• Traceless: tr(X) = tr(Y) = tr(Z) = 0

• Same determinant: det(X) = det(Y) = det(Z) = −1

• Anticommutation: XY = −Y X, XZ = −ZX, Y Z = −ZY

• Cyclic structure:
XY = iZ Y Z = iX ZX = iY
Y Z = −iX ZY = −iX XZ = −iY

These Pauli matrices form a group P1 of order 16 under matrix multiplication, where each element is of the
form αP with α ∈ {±1,±i} and P ∈ {I,X, Y, Z}. More generally, each element of the n-qubit Pauli group
Pn is of the form αP1 ⊗ P2 ⊗ · · · ⊗ Pn where α ∈ {±1,±i} and Pi ∈ {I,X, Y, Z}.

Although |Pn| = 4 · 4n, Pn is generated by just 2n elements: Pauli elements with a single Z and Pauli
elements with a single X. For example, on 3-qubits, the generators are

3

Z-elements X-elements
Z ⊗ I ⊗ I
I ⊗Z ⊗ I
I ⊗ I ⊗Z

X ⊗ I ⊗ I
I ⊗X ⊗ I
I ⊗ I ⊗X

and using the multiplication properties of the Pauli matrices, one can check that these do indeed generate
the entire group.

We will often refer to the Pauli elements without the phase as the n-qubit Pauli matrices. In fact, the
n-qubit Pauli matrices are particularly nice because they form a basis for all complex matrices:

Fact 6. The n-qubit Pauli matrices form a basis for all complex 2n × 2n matrices.

Proof. Treat each 2n× 2n matrix A as a vector of length 4n denoted by vec(A). Then, we can express inner
products between matrices A and B as vec(A) · vec(B) = tr(AB†).

We now claim that all 4n Pauli matrices are linearly independent. To see this, let P = P1 ⊗ · · · ⊗Pn and
Q = Q1 ⊗ · · · ⊗Qn be two distinct n-qubit Pauli matrices. We have that

tr(PQ) = tr(P1Q1 ⊗ · · · ⊗ PnQn) = tr(P1Q1) · · · tr(PnQn) = 0

since there must exist at least some index i for which Pi ̸= Qi. In more detail, notice that when Pi ̸= Qi for
Pi, Qi ∈ {I,X, Y, Z} that PiQi = αR for α ∈ {±1,±i} and R ∈ {X,Y, Z}. Therefore, tr(PiQi) = α tr(R) = 0
since the Pauli matrices are traceless.

Since we have a space of dimension 4n and all 4n Pauli matrices are linearly independent, we must have
that the span of the Pauli matrices is the entire space.

As a special case, we can look at the Pauli decomposition for density matrices of pure states.

Fact 7. Let |ψ⟩ be an n-qubit pure state. The density matrix |ψ⟩⟨ψ| =
∑
P∈{I,X,Y,Z}⊗n αPP with αP ∈ R

and
∑
P α

2
P = 2−n.

Proof. By Fact 6, we can write |ψ⟩⟨ψ| =
∑
P αPP where P ∈ {I,X, Y, Z}⊗n and αP ∈ C. Since the Pauli

matrices are Hermitian, we have

|ψ⟩⟨ψ| =
∑
P

αPP =
∑
P

α∗
PP.

This implies that αP = α∗
P since the P are linearly independent, which in turn implies that the αP coefficients

are real. Furthermore, using the purity of |ψ⟩ we have

1 = tr(|ψ⟩⟨ψ|) = tr(|ψ⟩⟨ψ| · |ψ⟩⟨ψ|) =
∑
P,Q

αPαQ tr(PQ) =
∑
P

α2
P tr(I⊗n) = 2n

∑
P

α2
P

where we’ve used that tr(PQ) = 0 for P ̸= Q, P 2 = I⊗n, and tr(I⊗n) = 2n.

4.2 Pauli matrices and stabilizer groups

Now that we have defined the Pauli group, let’s use it to help us represent a quantum state.

Definition 8. For n-qubit state |ψ⟩, we say unitary U stabilizes |ψ⟩ iff U |ψ⟩ = |ψ⟩. Let the stabilizer group
Stab(|ψ⟩) ⊆ Pn be the set of all Pauli elements that stabilize |ψ⟩.

Fact 9. Stab(|ψ⟩) is an Abelian group under matrix multiplication.

Proof. If Pauli elements P and Q both stabilize |ψ⟩, then so do PQ and P †.
To argue that this group must be Abelian, notice that any two Pauli’s P and Q either commute

(PQ = QP) or anti-commute (PQ = −QP). Suppose that P and Q anti-commute. We get the follow-
ing contradiction:

|ψ⟩ = PQ |ψ⟩ = −QP |ψ⟩ = − |ψ⟩ .

Therefore, P and Q must commute, and the stabilizer group is Abelian.

4

Does the stabilizer group constitute a reasonable representation state? By a counting argument, one can
see that there exist many quantum states whose stabilizer groups are empty, so this stabilizer representation
won’t be very good for them. On the other hand, if the stabilizer group is large enough, then it is a unique
representation of the state:

Fact 10. For any stabilizer group of size 2n, there is only one state (up to global phase) with that stabilizer
group.

Proof. Let |ψ⟩ be an n-qubit state with |Stab(|ψ⟩)| = 2n. Let |φ⟩⟨φ| be the density matrix of any state
stabilized by every element in Stab(|ψ⟩). We claim that this density matrix is unique. To see this, first
expand |φ⟩⟨φ| in the Pauli basis using Fact 7: |φ⟩⟨φ| =

∑
P αPP . Now take any Q ∈ Stab(|ψ⟩). We have

1 = tr(|φ⟩⟨φ|) = tr(Q |φ⟩⟨φ|) =
∑
P

αP tr(QP) = αQ tr(I⊗n) =
αQ
2n

where we have used (in order) that Q stabilizes |φ⟩, that tr(QP) = 0 for Q ̸= P , and that Q2 = I⊗n for any
Pauli. In other words, for each of the 2n stabilizers in Stab(|ψ⟩), the corresponding coefficient in the Pauli
expansion is 2−n. Notice that this implies all other Pauli coefficients must be zero since by Fact 7 we have

2−n =
∑
P

α2
P =

∑
Q∈Stab(|ψ⟩)

α2
Q +

∑
P ̸∈Stab(|ψ⟩)

α2
P = 2−n +

∑
P ̸∈Stab(|ψ⟩)

α2
P .

Since the αP coefficients are real, their squares must be non-negative. On the other hand, the above equation
implies that

∑
P ̸∈Stab(|ψ⟩) α

2
P = 0, so they must all be zero.

Because of this, let’s focus our attention on states that have stabilizer groups of size 2n. This raises the
obvious question: which states have these large stabilizer groups? Well, to start, notice that the all-zeroes
state is stabilized by every Pauli matrix which is a tensor product of identity matrices (I) and Pauli-Z
matrices. There are 2n such matrices, so they comprise the entire stabilizer group.

We now have a stabilizer representation of our initial state. A reasonable requirement is that we can
determine how the stabilizer group changes when we apply a unitary to the state:

Fact 11. U stabilizes |ψ⟩ iff V UV † stabilizes V |ψ⟩.

Proof. |ψ⟩ = U |ψ⟩ ⇐⇒ V |ψ⟩ = V U |ψ⟩ = (V UV †)V |ψ⟩

In other words, if we apply a gate to our state, then we can update the stabilizer group representation
by conjugating every stabilizer by the gate. In general, we don’t have any guarantee on the form of V UV †.
That is, even if U is a Pauli matrix, it’s conjugation under an arbitrary unitary might not be Pauli.

We are now ready to reveal the key feature of Clifford circuits:

Theorem 12. The Clifford group is the normalizer of the Pauli group. That is, a unitary U is Clifford iff
UPU† is in the Pauli group for all Pauli matrices P .

For now, we just describe the direction which is important Clifford circuit simulation: if U is Clifford,
then UPU† is in the Pauli group. To make our lives easier, we will simplify down to just a few special cases
that we have to check:

• Only have to check CNOT, H, and S: Since U is Clifford, we can write U = g1 · · · gm as a product
of CNOT, H, and S gates. Therefore, if each gate gi maps Pauli elements to Pauli elements under
conjugation, then we have

UPU† = g1 · · · gm−1(gmPg
†
m)g†m−1 · · · g1 = g1 · · · gm−2(gm−1P

′g†m−1)g
†
m−2 · · · g1 = . . .

is another Pauli matrix.

5

• Only have to check generators of the Pauli group: Recall that every n-qubit Pauli P can be expressed
as the product of 2n different generators, which consist of the Pauli elements with a single Z term and
a single X term. Therefore, if we specify how a unitary affects each such generator under conjugation,
then we can determine its more general behavior. Namely, if P = P1P2 · · ·Pk for Pauli generators Pi,
then

UPU† = UP1P2 · · ·PkU† = (UP1U
†)(UP2U

†)U · · ·U†(UPkU
†)

for any unitary U .

To complete the proof, we can simply show how each of CNOT, H, and S affects the Pauli generators:

P HPH†

X
Z

Z
X

P SPS†

X
Z

Y
Z

P CNOTP CNOT†

X ⊗ I
I ⊗X
Z ⊗ I
I ⊗ Z

X ⊗X
I ⊗X
Z ⊗ I
Z ⊗ Z

As a direct consequence, we can simulate Clifford circuits by keeping track of the stabilizer group and
how it changes under the application of each gate in the circuit.

5 Simulation of Clifford circuits using stabilizer groups

There are two remaining issues to address in order to obtain an efficient classical simulation of Clifford
circuits using stabilizer groups. The first is a question of efficiency: if we need to keep track of all 2n

stabilizer elements, then our algorithm would take exponential time. However, once again, we only need to
keep track of the generators of the stabilizer group:

Fact 13. Let |ψ⟩ be an n-qubit Clifford state. There exists n Pauli generators g1, . . . gn ∈ Pn such that
every P ∈ Stab(|ψ⟩) can be expressed as the product of generator elements. Furthermore, the generators are
independent in the sense that no generator can be expressed as the product of the other generators.

Proof. Recall that the stabilizer group of the all-zeroes state are all the Z-type Pauli elements. One can
check that this group is generated by the Pauli matrices with a single Z term: Z⊗I⊗· · ·⊗I, I⊗Z⊗· · ·⊗I,
. . ., I ⊗ I ⊗ · · · ⊗ Z. There are n such generators, and it is of minimal size.

Since every Clifford state is of the form U |0n⟩ for Clifford unitary U , we have that the stabilizer group
is generated by UZiU

† where Zi is the Pauli matrix with a single Z in the ith register.

It’s worth noting that although every stabilizer group can be represented by n generators g1, . . . , gn, this
representation is far from unique. In particular, one can check that multiplying the first generator into the
second yields a new set of generators g1, g1g2, . . . , gn. In some cases, this idea will allow us to simplify our
set of stabilizer generators using a multiplicative version of Gaussian elimination.

Let’s turn our attention to the final issue: how do we deal with measurements? Without loss of generality,
let’s just focus on a computational basis measurement on the first qubit. There are two cases:

Deterministic Measurement: This occurs when the state is either |0⟩ ⊗ |ψ′⟩ or |1⟩ ⊗ |ψ′⟩. In other words,
measuring the state results in |0⟩ or |1⟩ with probability 1, and it doesn’t change the state. Even though
we don’t need to update our stabilizer group representation, there are still two potential issues: how do
we determine if the measurement will be deterministic? and how can we determine the outcome of the
measurement?

For the first problem, notice that there cannot be any Pauli stabilizers of the form X ⊗ P or Y ⊗ P
for P ∈ Pn−1 because both stabilizers would flip the first qubit. We claim that if these stabilizers are
not present, then the measurement will be deterministic. To see this, notice that a computational basis
measurement projects the first qubit onto |0⟩ or |1⟩. We can express this projection as |0⟩⟨0| = (I + Z)/2
and |1⟩⟨1| = (I − Z)/2, respectively. Notice, however that if g stabilizes |ψ⟩ and it is of the form I ⊗ P or
Z ⊗ P , then it still stabilizes the state after projection:

g

(
I ± Z

2
⊗ I ⊗ · · · ⊗ I

)
|ψ⟩ =

(
I ± Z

2
⊗ I ⊗ · · · ⊗ I

)
g |ψ⟩ =

(
I ± Z

2
⊗ I ⊗ · · · ⊗ I

)
|ψ⟩ .

6

Since the stabilizer group has not changed and the stabilizer group is unique (Fact 10), the measurement
must have been deterministic.

In summary, we can now easily detect whether or not the measurement will be deterministic by checking
if all of the stabilizer generators start with either an I or a Z. To determine the result of the measurement,
we must now learn whether or not the state is of the form |0⟩ ⊗ |ψ′⟩ or |1⟩ ⊗ |ψ′⟩. Notice that the first state
is stabilized by Z ⊗ I ⊗ · · · ⊗ I, while the second state is stabilized by −Z ⊗ I ⊗ · · · ⊗ I. We simply need to
decide which. We can find it using Gaussian elimination in time O(n3).

Random Measurement: Since the measurement is not deterministic, there must exist some stabilizer generator
that starts with either an X or a Y . Using Lemma 5, one can check that the measurement result is either
|0⟩ or |1⟩ with 50% probability. Therefore, it is easy to output the result of the measurement. The difficulty
is in updating the stabilizer representation.

Once again, the stabilizers that start with I or Z remain in the stabilizer group because they still stabilize
the state after projection. On the other hand, we do need to remove the stabilizers which start with X or
Y because they anti-commute with the projection. There is a fairly nice way of doing this: take one of the
stabilizer generators that starts with an X or Y and multiply it into all of the remaining stabilizer generators
that start with an X or Y . One can check that now all the stabilizer generators start with either an I or
Z except for one. Now, remove the remaining stabilizer generator that starts with an X or Y . What’s left
are n− 1 stabilizer generators, so we only need to add one more. If the measurement outcome was |0⟩, add
the stabilizer generator Z ⊗ I ⊗ · · · ⊗ I and if it was |1⟩ add the stabilizer generator −Z ⊗ I ⊗ · · · ⊗ I. This
completes the measurement protocol. It takes time O(n2).

References

[DM03] Jeroen Dehaene and Bart De Moor. Clifford group, stabilizer states, and linear and quadratic
operations over GF(2). Physical Review A, 68(4), oct 2003.

[Got98] Daniel Gottesman. The Heisenberg representation of quantum computers, 1998.

[Shi02] Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems. In
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages
513–519. IEEE, 2002.

[VDN10] Maarten Van Den Nest. Classical simulation of quantum computation, the Gottesman-Knill the-
orem, and slightly beyond. Quantum Information & Computation, 10(3):258–271, 2010.

7

