
Introduction to Quantum Computing

Lecture Notes

Daniel Grier

Contents

1 Foundations of Quantum Mechanics 2
1.1 The basics of quantum computation . 2
1.2 Multi-qubit quantum computation . 4
1.3 Dirac notation and inner products . 7
1.4 Mixed states . 9
1.5 Noteworthy quantum phenomena . 13

2 Computation with Quantum Circuits 15
2.1 Introduction to quantum circuits . 15
2.2 Universality, approximations, and circuit size 19
2.3 Principle of Deferred Measurement . 20

3 Query Complexity 21
3.1 Defining a quantum oracle . 21
3.2 Fourier sampling problems . 22
3.3 Hidden subgroup problems . 26
3.4 Grover’s algorithm and the unstructured search problem 28

Bibliography 36

1

Chapter 1

Foundations of Quantum Mechanics

Before we can reason about the power of quantum computers, we must obviously first under-
stand what kinds of computations they unlock. We will start with the pure foundations: What
is a quantum state, and what kinds of operations can you perform on that state?

1.1 The basics of quantum computation

What is the state of a quantum system? Let’s start by analogy to one of the simplest classi-
cal objects—a biased coin. Since it will be convenient later, let’s suppose the coin has two
sides, corresponding to a 0-outcome and a 1-outcome (perhaps more traditionally these two
outcomes would be called “heads” and “tails”).

To be even more concrete, let’s suppose the coin is biased so that it lands on the 0-outcome
with 30% probability and on the 1-outcome with 70% probability. Suppose we flip the coin
in the air, and we want to describe the probability distribution over outcomes when the coin
lands. We could represent it by the length-2 vector:

(
0.3
0.7

)
← Probability of 0-outcome
← Probability of 1-outcome

In some sense, this represents the “state” of the coin if we know the coin has landed on one
side or the other, but we have not yet looked at which outcome.

If we were to look at the outcome, then the state of the system immediately changes to
whichever outcome we saw:

(
1
0

)
← 0-outcome

with certainty or
(
0
1

)
← 1-outcome

with certainty

since there is no ambiguity in the outcome once we’ve observed it.
Stepping back a bit, let’s look at the full description of states and operations in this classical

probability framework. First, notice that instead of a coin with just 2 outcomes, we could have
as many outcomes as we like (think of a biased die); but for simplicity, let’s assume there are
only finitely many. In a system with d outcomes, the state of the system would be described
by a vector of d probabilities. The key property of this vector is that each probability is non-
negative and all probabilities sum up to 1.

2

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 3

The set of operations that we could perform on this system are the set of operations that
take probability vectors to probability vectors. Specifically (and we will see how this changes
in the quantum setting soon), these operations preserve the ℓ1-norm of the vector, where the
ℓ1-norm of vector v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥1 :=
d∑

i=1

|vi|

1.1.1 Qubits

Let’s now complete the analogy of the classical probabilistic bit discussed above with the
quantum variant called a qubit. Instead of assigning two outcomes (0 and 1) a probability, we
instead assign them a complex number called an amplitude. We represent a qubit as a column
vector in C2. For example,

(
1√
2
i√
2

)
← Amplitude on 0-outcome
← Amplitude on 1-outcome

Let’s now discuss what it means to “look” at a quantum state, which is called measurement in
the quantum setting. The measurement axiom of quantum mechanics, called the Born rule,
says that you see a particular outcome with the squared magnitude of the amplitude. For
the example above, this means we’d see the 0-outcome with probability |1/

√
2|2 = 1/2 and

the outcome will be 1 with probability |i/
√
2|2 = 1/2. Once again, when you observe this

outcome the qubit collapses to whichever outcome you observed.
From the Born rule, we can derive a condition on the amplitudes of a qubit. Suppose

we have a qubit with amplitudes α, β ∈ C. The Born rule states that we see the outcome
with probability |α|2 and |β|2, respectively. Since there are only two outcomes, these two
probabilities must sum up to 1 (i.e., we must see either theO or 1 outcome when we measure).
We arrive at the following condition for the amplitudes of a qubit: |α|2 + |β|2 = 1.

Stepping back again, let’s give a complete mathematical description of a quantum state.
We can generalize to quantum state with d outcomes (called a qudit for d > 2), which is
represented by a length-d complex vector. The key property of this vector is that the squared
magnitudes of the amplitudes sum to 1. In other words, the ℓ2-norm of the vector is 1. The
ℓ2-norm of any v = (v1, v2, . . . , vd) ∈ Cd is defined as

∥v∥2 :=

√√√√
d∑

i=1

|vi|2.

It is an amazing fact that moving from the classical to the quantum setting is in some sense
just moving from the ℓ1 to the ℓ2 norm.

1.1.2 Unitary matrices

Because the set of valid quantum states must have unit ℓ2-norm, the set of viable quantum
operations must preserve the ℓ2-norm of the state. However, not all such operations are valid.
An axiom of quantum mechanics dictates that quantum operations must also be linear. We

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 4

will see a slight generalization of this later, but for now, you can think of this linearity as
implying that quantum operations are matrices. Applying a quantum operation to a quan-
tum state simply means multiplying the vector of the state with the matrix of the quantum
operation.

Matrices preserving the ℓ2-norm have a beautiful characterization—namely, they are the
unitary matrices, i.e., matrices U ∈ Cd×d such that UU † = I. Here, “†” is the conjugate
transpose operation and “I” is the identity matrix.

1.2 Multi-qubit quantum computation

In general, we think of large classical computations as a sequence of operations on some
bit string. In this way we can break up some large complex operation into a sequence of
simpler operations. The number of operations required to build the more complex operation
is a proxy for how complex that operation really is. Similarly, in quantum systems, we want
to build up larger more complex operations from simpler ones. To do this, we first need to
understand what a quantum systems consisting of multiple qubits, so that we can understand
what it means to locally apply some quantum operation.

1.2.1 Tensor product of states

Once again, let’s start with a discussion of multiple classical random bits, and see how it
generalizes to qubits. Let A,B be two random bits. Each bit has some probability of being
in the 0 or 1 outcome. Together, the two bits give rise to a probability distribution over pairs
of outcomes (i.e., 00, 01, 10, and 11). We can derive the probability of a particular pair of
outcomes by multiplying the probabilities of the individual outcome for each bit. For example,
let

A =

(
0.3
0.7

)
← 0
← 1

, B =

(
0.6
0.4

)
← 0
← 1

Then the product distribution associated to A and B together gives rise to the vector

AB =

0.18
0.12
0.42
0.28

← 00
← 01
← 10
← 11

Combining two separate qubits into a single system is exactly the same. Let v, w ∈ C2 be
vectors representing two qubits. The vector of the joint system is called the tensor product
v ⊗ w of the two vectors v and w. The tensor product operation yields the vector containing
all products of amplitudes. The example looks identical to the classical setting:

v =

(√
0.3√
0.7

)
← 0
← 1

, w =

(√
0.6√
0.4

)
← 0
← 1

and

v ⊗ w =

√
0.18√
0.12√
0.42√
0.28

← 00
← 01
← 10
← 11

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 5

Formally, the tensor product operation⊗ is defined over any pair of vectors v ∈ Ca and w ∈ Cb
(not necessarily of the same length) as

v ⊗ w :=

v1w

...
vaw

 =

v1w1
...

v1wd
v2w1

...
vawb

From this definition, one can derive the following properties of the tensor product, which
hold for all complex vectors v, w, z and scalars α, β ∈ C:

Scalar multiplication: (αv)⊗ (βw) = (αβ)(v ⊗ w)
Associativity: (v ⊗ w)⊗ z = v ⊗ (w ⊗ z)
Distributivity: v ⊗ (w + z) = v ⊗ w + v ⊗ z

We have that the tensor product of two qubits is represented by a length-4 complex vector,
the tensor product of three qubits is represented by a length-8 vector, and so on. One of the
key questions we will ask in these notes is: how much of this exponentially is really there?
Of course, when it comes to quantum states constructed from tensor products of qubits, the
answer is... not much. To describe such a state, we simply need the 2 amplitudes for each
individual qubit, a total of 2n amplitudes for an n-qubit state, rather than the 2n amplitudes
in the tensor product vector.

Critically, however, not all quantum states over qubits can be described in this way. That is,
we can start with tensor product of single-qubit quantum states, apply a sequence of quantum
operations, and arrive at a state which cannot be described by any tensor product of single-
qubit states. Such states are called entangled.

Our first example of an entangled 2-qubit state is the following:

1/
√
2

0
0

1/
√
2

which is known (amongst other names) as the Bell state. Before we prove this state is en-
tangled, let’s take a moment to consider what would happen if we measured this state. We
would see the 00 outcomes with probability 1/2 and the 11 outcome with probability 1/2. In
other words, if we made the measurement and we saw that the first qubit was 0, we would
immediately know the second qubit was also 0. This description gets even stranger when
we consider the possibility that we could dramatically separate the first and second qubits,
putting each on either end of the galaxy (hard to do in practice, of course!). Measuring at
one end of the galaxy immediately tells us outcome of the qubit at the other end.1

1A significant amount of ink has been spilled on exactly what is happening at a physical layer when a measure-
ment like this is made. Look up the ”quantum measurement problem”. Thankfully for one of the most cherished
pysical laws, this entanglement phenomenon does not allow for faster than light communication.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 6

To prove the Bell state is entangled, we argue by contradiction. Suppose otherwise, then
we would have

1/
√
2

0
0

1/
√
2

 =

(
α0

α1

)
⊗
(
β0
β1

)
=

α0β0
α0β1
α1β0
α1β1

for some complex amplitudes α0, α1, β0, β1. Comparing the left and right equations, we get
the constraints:

1√
2
= α0β0, 0 = α0β1, 0 = α1β0,

1√
2
= α1β1.

One can check this system of equations has no feasible solution, and therefore, the Bell state
must entangled.

1.2.2 Tensor product of matrices

The tensor product of matrices is the unique operator which respects the tensor product of
the underlying states. That is, for unitaries U ∈ Ca and V ∈ Cb, the tensor product unitary
U ⊗ V is the unique linear operator such that

(U ⊗ V)(v ⊗ w) = (Uv)⊗ (V w)

for all states v ∈ Ca and w ∈ Cb. This definition lines up with our intuition that if we apply a
unitary to a specific qubit, then it should not affect any other qubit.

Formally, one can give a (rather more cumbersome) definition of the tensor product of
arbitrary matrices U ∈ Ca and V ∈ Cb as:

U ⊗ V =

u11V u12V · · · u1aV
u21V u22V · · · u2aV

...
...

. . .
...

ua1V ua2V · · · uaaV

 .

Written out somewhat more explicitly when a = b = 2, we have

U ⊗ V =

u11

(
v11 v12
v21 v22

)
u12

(
v11 v12
v21 v22

)

u21

(
v11 v12
v21 v22

)
u22

(
v11 v12
v21 v22

)

 =

u11v11 u11v12 u12v11 u12v12
u11v21 u11v22 u12v21 u12v22
u21v11 u21v12 u22v11 u22v12
u21v21 u21v22 u22v21 u22v22

 .

1.2.3 Partial measurement

With the tensor product, we can now talk about unitary matrices applied to a subset of qubits
in our computation. As it turns out, it is also makes sense to measure a subset of qubits.
Once again, we can appeal to our classical intuition. Suppose we have the following classical
distribution over outcomes:

0.3
0.1
0.3
0.3

← 00
← 01
← 10
← 11

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 7

Suppose we look at the second coin, but not the first. The probability the see the 0-outcome
for the second coin is

Pr[00-outcome] + Pr[10-outcome] = .3 + .3 = .6

since both of those outcomes are consistent with seeing 0 for the second coin. By an identical
calculation, we see the 1-outcome for the second coin with 40% probability.

Let’s suppose we do see the second coin in the 0-outcome. Now we must calculate the
distribution on the first coin conditioned on seeing the second coin in the 0-outcome. For
either outcome b ∈ {0, 1}, we have

Pr[b for first coin | 0 for second coin] =
Pr[(b for first coin) ∧ (0 for second coin)]

Pr[0 for second coin]
.

In our example, the probability we see the 0-outcome on the first coin conditioned on having
seen 0 for the second outcome is just .3/.6 = .5. In practice, its often easiest to do these calcu-
lations by simply removing the outcomes that are inconsistent with the partial measurement,
and then renormalizing the vector. For our example where we’ve seen the 0-outcome on the
second coin, we have

0.3
0.1
0.3
0.3

Remove inconsistent
outcomes−−−−−−−−−−−−→

0.3
0
0.3
0

Renormalize−−−−−−−→

0.5
0
0.5
0

 .

Once again, the quantum setting is identical except everything is done with respect to the
ℓ2-norm rather than the ℓ1-norm. For completeness, let’s look at a similar example with a
quantum state:

√
0.3√
0.1√
0.3√
0.3

← 00
← 01
← 10
← 11

The probability we see the 0-outcome for second qubit is |
√
.3|2 + |

√
.3|2 = .6, and the distri-

bution on the first qubit conditioned on this outcome is

√
0.3√
0.1√
0.3√
0.3

Remove inconsistent
outcomes−−−−−−−−−−−−→

√
0.3
0√
0.3
0

Renormalize−−−−−−−→

√
0.5
0√
0.5
0

 .

This procedure will be easier to describe more formally once we’ve introduced the notation
in the following section.

1.3 Dirac notation and inner products

Let’s start this section by introducing a method for writing quantum states, called Dirac no-
tation. While this notation may at first seem somewhat unnecessary, it turns out to be quite

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 8

natural. The most basic notational idea is that we will use a “ket”, which looks like |·⟩, to
describe a vector that is supposed to be a quantum state (i.e., a unit vector with respect to the
ℓ2-norm). Importantly, we reserve certain vectors special states. In particular, the 0-outcome
and 1-outcome states, which we have previously been referring to somewhat awkwardly, are
now associated with the following vectors:

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

So, for example, we can write an arbitrary single-qubit quantum state |ψ⟩ as

|ψ⟩ = α |0⟩+ β |1⟩
for amplitudes α, β ∈ C. To write multi-qubit states in this notation, we employ another
useful shorthand for bit strings x ∈ {0, 1}n:

|x⟩ := |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩
We call such states the classical basis states. Now, any n-qubit state |ψ⟩ can be written as linear
combination of the classical basis states:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩

where αx ∈ C is some complex amplitude for each x ∈ {0, 1}n. For example, we can write
the Bell state introduced in the previous section as

|00⟩+ |11⟩√
2

.

1.3.1 Inner products

Every quantum state lives in a vector space Cd. We will often use that this vector space
is actually a Hilbert space, meaning that it is equipped with an inner product: for vectors
v, w ∈ Cd, their inner product is defined as

v†w =

d∑

i=1

viwi.

In Dirac notation, we write ⟨ψ| (pronounced “bra”-ψ) to denote the conjugate transpose of
the state |ψ⟩. Therefore, the inner product between two state |ψ⟩ and |φ⟩ is written as

⟨ψ|φ⟩ :=
bra
↓
⟨ψ| ·

ket
↓
|φ⟩

where the lefthand side shows yet another shorthand. Now we can finally see the reason for
the weird names “bra” and “ket”. When you put them together to form an inner product, you
get the phrase “braket”, which looks like “bracket” if you squint.

Why go through all this trouble to create a shorthand for inner products? Perhaps most
importantly, the inner product induces a natural distance measure on quantum states. If the
inner product of two states is 1, then the states are identical. If the inner product is 0, then
the states are perfectly distinguishable.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 9

1.3.2 Outer products

We can also use Dirac notation to denote the outer product between states in the natural way.
For states |ψ⟩ , |φ⟩ ∈ Cd, their outer product is

|ψ⟩⟨φ| :=

ψ1

ψ2
...
ψd

(
φ1 φ2 · · · φd

)
=

ψ1φ1 ψ1φ2 · · · ψ1φd
ψ2φ1 ψ2φ2 · · · ψ2φd

...
...

. . .
...

ψdφ1 ψdφ2 · · · ψdφd

The outer product is useful for describing quantum operations. For example, an arbitrary
n-qubit unitary U can be written as

U =
∑

x,y∈{0,1}n
ux,y |x⟩⟨y|

where ux,y = ⟨x|U |y⟩ ∈ C is the amplitude the unitary places on the state |x⟩ on input |y⟩. In
this case, |x⟩⟨y| is just matrix which is 1 at entry (x, y) and 0 everywhere else.

Summary – Quantum computation over n qubits

States: |ψ⟩ ∈ C2n such that
∑

x∈{0,1}n |⟨x|ψ⟩|2 = 1

Operations: U ∈ C2n×2n such that U †U = U †U = I
Applying U to |ψ⟩ results in the state U |ψ⟩

Measurement: State collapses to |x⟩ with probability |⟨x|ψ⟩|2

1.4 Mixed states

For many questions in quantum computation, the formalism of states and operations we’ve
previously developed is sufficient. For example, most quantum algorithms start with some
classical basis state, apply some unitary operation, and then measure. However, there is
actually a more general form of a quantum state that is useful in a variety of contexts, like
when you have noise in your quantum computer.

The quantum states |ψ⟩ we have defined previously are called pure states. What makes a
state “impure”, or as it’s traditionally called “mixed”? We say that a state is mixed when it
represents a probability distrubtion of pure states. To see why these two notions are different,
it’s helpful to look at an example.

On the one hand, let’s take the pure state |+⟩ := |0⟩+|1⟩√
2

which in some sense equal parts
|0⟩ and |1⟩. On the other hand, let’s take the mixed state which is either |0⟩ or |1⟩ with 50%
probability. These states may superficially seem to be the same (after all, they have the same
probability over outcomes when measured), but are actually quite different. To see this, let’s
examine what happens when we apply the following unitary H, which is called the Hadamard
gate:

H =
1√
2

(
1 1
1 −1

)
.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 10

Applying H to our pure state |+⟩, we get

H |+⟩ = 1

2

(
1 1
1 −1

)(
1
1

)
=

(
1
0

)
= |0⟩

In other words, if we were to measure our pure state after the application of the unitary
operation H, then we are guaranteed to see the outcome |0⟩. This will not be true in our
mixed state picture. Let’s do the calculation. Applying H to the mixed state, we get

H |0⟩ = 1

2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩

and

H |1⟩ = 1

2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=: |−⟩ ,

each of which happens with 50% probability. What is the probability we measure |0⟩ now?
Given the calculation above of what the Hadamard transformation does to each of our starting
states, we have

Pr[measure |0⟩] =Pr[Original state was |0⟩] · Pr[measure |0⟩ on state |+⟩]
+ Pr[Original state was |1⟩] · Pr[measure |0⟩ on state |−⟩]

=
1

2
· 1
2
+

1

2
· 1
2
=

1

2

We can now see that when our state was a statistical mixture of |0⟩ and |1⟩, the Hadamard
transformation didn’t change our measurement probabilities at all. In fact, this is a general
phenomenon. One can show that no matter what unitary transformation you apply to this
mixed state, you will always get |0⟩ and |1⟩ with 50% probability. This will be easy to show
using the formalism we now introduce.

1.4.1 Density matrices

General quantum systems are fully described by statistical mixtures of quantum states—that
is, an ensemble of pure states {|ψi⟩}i each of which is prepared with probability pi ∈ [0, 1].
The density matrix corresponding to this ensemble is

ρ =
∑

i

pi |ψi⟩⟨ψi| ∈ C2n×2n

where
∑

i pi = 1. One can show that if you have a density matrix ρ and apply a unitary U ,
that the new density matrix is given by UρU †. Furthermore, measurement results in outcome
|x⟩ with probability ⟨x| ρ |x⟩, whereupon ρ collapses to the state |x⟩⟨x|.

Let’s revisit our example of an even statistical mixture of the states |0⟩ and |1⟩. The
corresponding density matrix is

1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

1

2

(
1 0
0 1

)
=
I

2
.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 11

As it turns out this stated is called the maximally mixed state since it represents that we
essentially have no knowledge of what the underlying state is. To see this, imagine applying
any unitary U to this state. We would get

U

(
I

2

)
U † =

UU †

2
=
I

2
,

as the new state, which is the same state we started with. In other words, no unitary operation
changes how the state looks. This proves the claim we made earlier that any unitary followed
by measurement would result in outcomes |0⟩ and |1⟩ with equal probability.

What matrices correspond to ensembles of pure states? As it turns out, there is a very nice
characterization: ρ is a valid density matrix if and only if ρ is a trace-1 positive semidefinite
matrix. Trace-1 implies that Tr(ρ) = 1. Positive semidefinite implies that ⟨ψ| ρ |ψ⟩ ≥ 0 for all
pure states |ψ⟩.

The forward direction of this claim can be shown by reasoning directly about the types
of matrices that an ensemble of states can give rise to. The reverse direction can be shown
by taking the spectral decomposition of ρ, which is valid since we have assumed that ρ is
positive semidefinite. The eigenvectors of this decomposition will be the pure states in the
decomposition, and the eigenvalues will be the associated probabilities.

1.4.2 Quantum channels

As one might have now guessed, unitary transformations are also not the most general trans-
formation on quantum states. Quantum transformations that work on the level of density
matrices are called quantum channels. That said, it is not true that every channel which
preserves density matrices corresponds to a valid quantum operation. Most importantly, as
required by the axioms of quantum mechanics, the channel must be linear. Furthermore, for
technical reasons having to do with applying the channel to a restricted set of qubits, we
must also require that the quantum channel still maps density matrices to density matrices
when it is tensored with the identity map. Maps satisfying all the above conditions are called
completely positive trace preserving (CPTP).

1.4.3 Measurement

While there is a more general form of quantum measurements, it turns out that these more
general measurements can be simulated by the measurements that we have already intro-
duced. So, for simplicity, we will always assume that we measure our qubits the usual way.

Summary – Quantum computation with n-qubit mixed states

States: ρ ∈ C2n×2n such that Tr(ρ) = 1 and ρ is positive semidefinite

Operations: Completely positive trace-preserving maps Φ
If Φ is a unitary channel, then Φ(ρ) = UρU † for unitary U ∈ C2n×2n

Measurement: State collapses to |x⟩⟨x| with probability ⟨x| ρ |x⟩

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 12

1.4.4 Partial Trace

One of the most important reasons to introduce the density matrix formalism is to be able
to talk about parts of a quantum state in isolation. That is, even if we have an n-qubit pure
state, it is not necessarily the case that the state restricted to, say, the first n/2 qubits is a pure
state.

We now introduce a way to “trace out” part of a density matrix of a large system to
describe the state on the leftover qubits. To start, let’s imagine we start with a composite
system HA ⊗HB. For simplicitly, you can at first just assume that HA and HB are the Hilbert
spaces for two different qubits. Formally, the partial trace TrB is the unique linear map
satisfying

TrB(|ai⟩ ⟨aj |)⊗ |bi⟩ ⟨bj |) = |ai⟩ ⟨aj |Tr(|bi⟩ ⟨bj |) ,
where ai, aj ∈ HA and bi, bj ∈ HB are basis elements for the two subsystems.

So, if we have some state ρAB that lives in the Hilbert space HA ⊗ HB, then the density
matrix for the subsystem A after ignoring the subsystem B is given by

ρA = TrB (ρAB) .

If we apply the partial trace operator to a product state we get, unsurprisingly,

TrB (ρA ⊗ ρB) = ρA.

What happens when we take the partial trace of the Bell state? The density matrix is given by

ρBell :=

(|00⟩+ |11⟩√
2

)(⟨00|+ ⟨11|√
2

)
=
|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|

2

so tracing out the second qubit, we get (by linearity of the partial trace)

Tr2(ρBell) =
1

2
(Tr2(|00⟩⟨00|) + Tr2(|00⟩⟨11|) + Tr2(|11⟩⟨00|) + Tr2(|11⟩⟨11|))

=
1

2
(|0⟩⟨0|Tr(|0⟩⟨0|) + |0⟩⟨1|Tr(|0⟩⟨1|) + |1⟩⟨0|Tr(|1⟩⟨0|) + |1⟩⟨1|Tr(|1⟩⟨1|))

=
1

2
(|0⟩⟨0| · 1 + |0⟩⟨1| · 0 + |1⟩⟨0| · 0 + |1⟩⟨1| · 1)

=
|0⟩⟨0|+ |1⟩⟨1|

2
.

That is, if we take the Bell state and trace out a qubit, we are left with the maximally mixed
state. This may give you some sense of the fragility of quantum computations. If you take an
entangled state and lose a single qubit, it may become completely useless.

1.4.5 Reconciling the pure and mixed states

Often it will be easier to reason about pure states rather than mixed ones. As we’ve seen
before, this is in some sense fundamentally impossible—there are mixed states which behave
completely differently from pure ones. That said, there is also some sense in which there is
an equivalence between the two settings. Namely, for every n-qubit mixed state ρ, there is

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 13

a (2n)-qubit pure state such that tracing out the last n qubits of |ψ⟩ leaves the state ρ. This
process is called purification.

We will give an explicit purification procedure. First, let ρ be an arbitrary n-qubit mixed
state:

ρ =
∑

x∈{0,1}n
px |ψx⟩⟨ψx|

The following state will be a purification of ρ:

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ |x⟩

Let B be the system consisting of the last n qubits. Tracing out B, we get the density matrix:

TrB (|ψ⟩⟨ψ|) = TrB

(∑
x,y
√
pxpy |ψx⟩⟨ψy| ⊗ |x⟩⟨y|

)

=
∑

x,y
√
pxpy TrB(|ψx⟩⟨ψy| ⊗ |x⟩⟨y|) (Linearity of partial trace)

=
∑

x,y
√
pxpy |ψx⟩⟨ψj |Tr (|x⟩⟨y|) (Definition of partial trace)

=
∑

x px |ψx⟩⟨ψx| (Trace is 1 iff x = y)

which is precisely the mixed state ρ that we wanted to embed into |ψ⟩.
Are purifications unique? Unfortunately, not. To see this, notice that we can generalize

our purification procedure above my multiplying the second register by any n-qubit unitary
U :

|ψ⟩ :=
∑

x∈{0,1}n

√
px |ψx⟩ ⊗ (U |x⟩).

Intuitively, it makes sense that changing the basis of the second register shouldn’t affect partial
trace since we never used anything special about the classical basis states. Formally, you can
check that the computation is agnostic to the choice of unitary U because of the following
equalities:

Tr(U |x⟩⟨y|U †) = Tr(U †U |x⟩⟨y|) = Tr(|x⟩⟨y|)
where the first equality uses the cyclic property of the trace and the second using the fact that
U is unitary.

1.5 Noteworthy quantum phenomena

Let’s start to use the quantum formalism to take note of some interesting phenomena. We
start with a classic result which implies that quantum information cannot be copied.

Theorem 1.1 (No-Cloning Theorem). There is no (2n)-qubit unitary U and n-qubit state |φ⟩
such that

U(|ψ⟩ ⊗ |φ⟩) = |ψ⟩ ⊗ |ψ⟩
for all pure states |ψ⟩.

CHAPTER 1. FOUNDATIONS OF QUANTUM MECHANICS 14

Proof. We argue by constradiction. Suppose such at U and |φ⟩ existed, and let |ψ1⟩ , |ψ2⟩ be
two states we want to copy. In other words, we have

U(|ψi⟩ ⊗ |φ⟩) = |ψi⟩ ⊗ |ψi⟩

for i ∈ {1, 2}. Let’s now take the inner product of the two states U(|ψ1⟩⊗|φ⟩) and U(|ψ2⟩⊗|φ⟩)

(|ψ1⟩ ⊗ |φ⟩)U †U(|ψ2⟩ ⊗ |φ⟩) = ⟨ψ1|ψ2⟩ ⟨φ|φ⟩ = ⟨ψ1|ψ2⟩

and compare it to the inner product of |ψ1⟩ ⊗ |ψ1⟩ and |ψ2⟩ ⊗ |ψ2⟩:

(⟨ψ1| ⊗ ⟨ψ1|)(|ψ2⟩ ⊗ |ψ2⟩) = ⟨ψ1|ψ2⟩2 .

Cloning implies that these two expressions are equal:

⟨ψ1|ψ2⟩ = ⟨ψ1|ψ2⟩2 .

However, for any states such that ⟨ψ1|ψ2⟩ ̸∈ {0, 1}, the above equation will not hold. That is,
cloning breaks for any distinct pair of non-orthogonal states!

Chapter 2

Computation with Quantum Circuits

How do we describe a quantum algorithm? One might think that something like a general-
ization of the classical Turing machine may be a particularly apt choice, given the centrality
of that model to the story of classical theory of computation. While it is possible to define a
quantum Turing machine, it turns out to be rather cumbersome to work with.

Instead, we will use a model of computation that more-or-less is the straightforward real-
ization of applying a sequence of unitaries—the quantum circuit.

2.1 Introduction to quantum circuits

A n-qubit quantum circuit is a collection of unitary operations G1, . . . , Gm, called gates, ap-
plied in sequence to a subset of n wires. The composition of the gates in the circuit generates
a 2n × 2n unitary operation. We assume that each gate is in tensor product with the identity
operation on each wire that it does not touch. Let’s look at a simple example:

G1

G3

G2

time−−−−−−−−−−−−→
The above diagram is a circut on 3 qubits with 3 gates: the single-qubit gate G1 is applied
first; the 2-qubit gate G2 is applied next; and finally G3 is applied as a 3-qubit gate. The
unitary matrix representing this circuit is

G3 (I ⊗G2) (G1 ⊗ I ⊗ I) .
Beware: matrix multiplication happens the reverse order of the circuit, which is why G1

appears last the composition of unitaries. Since G1 and G2 act on different wires, we get that

(I ⊗G2) (G1 ⊗ I ⊗ I) = G1 ⊗G2.

Therefore, in the diagram, we can put G1 and G2 on the same layer.

15

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 16

G1

G3

G2

That is, a layer of the circuits consists of a set of gates that can be applied simultaneously
since they act on different qubits. The depth of a circuit is the number of layers of gates it has.
Therefore, the example circuit above has depth 2.

2.1.1 Examples with common gates

Let’s take a look at some of the most common gates used in quantum circuits and the special
notation that we use to denote them.

Classical reversible gates

One of the most common two-qubit gates is the controlled-NOT or CNOT gate. Recall that by
linearity, it suffices to define the action of any gate on the computational basis. CNOT has the
following action:

|00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩ .

Notice that CNOT maps any computational basis state to another computational basis state.
That is, the CNOT gate is “classical” in the sense that it cannot be used to create superposition
of inputs. A CNOT gate in a circuit is depicted as a • symbol (the control) connected to a ⊕
symbol (the target):

|x⟩ |x⟩
|b⟩ |b⊕ x⟩

Here, we’ve shown how the CNOT gate acts on general computational basis states, where
x, b ∈ {0, 1} are arbitrary bits and b⊕ x denotes their XOR (i.e., addition modulo 2).

Another related gate is the version of the CNOT gate with an extra control, that is, the
controlled-controlled-NOT gate, most commonly referred to as the Toffoli gate. As a circuit, it
looks like

|x⟩ |x⟩
|y⟩ |y⟩
|b⟩ |b⊕ xy⟩

where x, y, b ∈ {0, 1} are arbitrary bits (xy is the product of x and y). Notice that the third bit
is flipped exactly when both controls are 1.

The Toffoli gate is in some sense more powerful than the CNOT gate since it can be used to
generate the CNOT gate. Notice that if we set the second input qubit above to |1⟩ (i.e., y = 1),

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 17

then the remaining effect on the remaining two qubits is exactly the CNOT gate. We will see
later however, that the reverse is not true—we cannot just use the CNOT gate to generate a
Toffoli gate.

Finally, let’s discuss the SWAP gate, another important “classical reversible” gate on 2
qubits. Aplty named, the SWAP gate swaps qubits, i.e., for all x, y ∈ {0, 1} it maps:

|xy⟩ 7→ |yx⟩ .

In a circuit diagram, it is depicted as

|x⟩ |y⟩
|y⟩ |x⟩

One can check the following nice identity:

=

In other words, we can replace every SWAP gate in a circuit with 3 CNOT gates. This is a
common theme we will continue to see—we can take some gates as the fundamental ones
that will generate the rest.

Change of basis operations

Evidently, we need a gate that can create a superposition of inputs from a classical basis state.
The Hadamard gate is the canonical choice for such an operation. It has the action

H |0⟩ = |0⟩+ |1⟩√
2

:= |+⟩ H |1⟩ = |0⟩ − |1⟩√
2

:= |−⟩

on the computational basis. Notice that Hadamard gate has given rise to a new basis, the
{|+⟩ , |−⟩} basis. In fact, Hadamard switches back and forth between the computational basis
and this new basis. That is, the Hadamard gate is its own inverse: H2 = I. As a circuit, it is
shown as

|x⟩ H
|0⟩+(−1)x|1⟩√

2

for any x ∈ {0, 1}.
As another example, let’s consider a circuit built from Hadamard and CNOT gates:

H H

H H

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 18

One way of understanding this circuit would be to just explicitly compute the unitary matrix
(H⊗H)CNOT(H⊗H), but it is often more helpful to instead look at how the system evolves
over a basis. Let’s see how it acts on the computational basis, considering one gate at a time:

|00⟩ H⊗H−−−→ |+⟩ ⊗ |+⟩ =
(|0⟩+ |1⟩√

2

)
⊗
(|0⟩+ |1⟩√

2

)
=
|00⟩+ |01⟩+ |10⟩+ |11⟩

2

That is, after applying H ⊗H, we have the uniform superposition over 2-qubit computational
basis states. We know that the CNOT gate just permutes the elements of the computational
basis, or, in other words, it must do nothing to do the above state:

|00⟩+ |01⟩+ |10⟩+ |11⟩
2

CNOT−−−−→ |00⟩+ |01⟩+ |10⟩+ |11⟩
2

.

Of course, if we’ve done nothing to the state, then it must also factorize as

|+⟩ ⊗ |+⟩ = (H ⊗H) |00⟩ .

Therefore, the final layer of Hadamard gates returns the state to |00⟩. That is, after all that
computation, we see that the circuit acts as the identity on the |00⟩. For completeness, let’s
see one more case (the input |01⟩) in its entirety:

|01⟩ H⊗H−−−→
(|0⟩+ |1⟩√

2

)
⊗
(|0⟩ − |1⟩√

2

)
=
|00⟩ − |01⟩+ |10⟩ − |11⟩

2

CNOT−−−−→ |00⟩ − |01⟩ − |10⟩+ |11⟩
2

= |−⟩ ⊗ |−⟩
H⊗H−−−→ |11⟩

If we were to continue with the entire computational basis, we would see

|00⟩ 7→ |00⟩ , |01⟩ 7→ |11⟩ , |10⟩ 7→ |10⟩ , |11⟩ 7→ |01⟩ .

We’ve seen this gate before. It’s just the CNOT gate with the control on the second qubit
instead of the first! That is, we’ve derived the following circuit identity:

H H
=

H H

Notice that up until this point, every gate that we’ve introduced is real—the all elements
of the unitary matrix representing the gate are real numbers. Let’s now introduce some gates
that have complex entries.

Phase gates

The gate most commonly referred to as the “phase gate” is the single-qubit diagonal gate S
that simply multiplies the |1⟩ state by a phase of i:

S |0⟩ = |0⟩ S |1⟩ = i |1⟩

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 19

Another type of phase gate, most commonly called a T -gate, is the square root of this
operation:

T |0⟩ = |0⟩ T |1⟩ = ei
π
4 |1⟩

Unsurprisingly, there are many other common gates that we have yet to define. Thankfully,
the gates we have already allow us to do essentially everything we want.

2.2 Universality, approximations, and circuit size

A gate set is the collections of gates that one can use in the construction of a circuit. Typically,
when a gate is included in a gate set, then you’re allowed to apply that gate as many times
you like on whichever subset of qubits that you like.

Universality captures the notion that a particular gate set can be used to construct any
possible quantum operation. There are several different kinds of universality you might want:

• Exact Universality: For any n-qubit unitary, there is a circuit that exactly compute the
unitary.

• Approximate Universality: For any n-qubit unitary, there is a circuit that approximately
computes the unitary. One common measure of closeness is the operator norm.

• Computational Universality: For any n-qubit unitary, the probability distribution result-
ing from measuring the first qubit can be approximated by measuring the first qubit of
the circuit. For example, it turns out that real quantum gates (without complex entries)
are sufficient for computational universality, whereas they clearly fail on the other two
notions of universality.

Given that we have a universal gate set, how many gates do we actually need to construct
an arbitrary unitary? Let’s look at the exact case, where we can get an estimate based on the
number of parameters it takes to specify arbitrary unitary matrix. The first claim is that an
arbitrary complex d× d unitary matrix U is specified by d2 real parameters.

To see this, first note there are d2 entries in the matrix, each with a complex part and a real
part, that is, 2d2 real parameters total. However, the unitary constraint UU † = I imposes d2

algebraically independent real conditions (d for the fact that the norm of each column should
be 1, and d(d − 1) conditions for the fact that the complex inner product of each row should
be 0).

If our gate set consists of gates that only act on a constant number of qubits (which is often
the convention), then each such gate only contributes constantly many real parameters to the
construction of the unitary. Therefore, we must have Ω(4n) gates to construct an arbitrary
n-qubit unitary exactly.

A generalization of this result shows that this lower bound is essentially tight for approx-
imation computation as well—Ω(4n log(1/ϵ)) gates are required to approximately compute
any unitary to within ϵ-accuracy with respect to the operator norm [DN06]. That is, a unitary
U is ϵ-close to unitary V if

∥U − V ∥op = sup
ψ
∥(U − V) |ψ⟩∥2 ≤ ϵ.

Thankfully, there is a matching (up to polylog factors) circuit building algorithm as well.

CHAPTER 2. COMPUTATION WITH QUANTUM CIRCUITS 20

Theorem 2.1 (Solovay-Kitaev [Kit97]). Given an approximately universal gate set, there is a
circuit to appoximate any unitary to ϵ-accuracy with O(4npolylog(1ϵ)) gates.

The version of the Solovay-Kitaev theorem stated above is actually the result of Bouland
and Giurgica-Tiron [BGT21], who show how to work with general gate sets. Unfortunately,
their result suffers in the exponent of the log factor. The original and most-efficient Solovay-
Kitaev theorems require that if a gate is in the gate set, then its inverse is also in the gate set.
The current best result in this setting is by Kuperperg, who shows a bound ofO(4n log1.441(1/ϵ))
gates [Kup23].

2.3 Principle of Deferred Measurement

So far in this section, we’ve used unitary gates as the only operations in a quantum circuit.
That is, we have been implicitly assuming that measurements are performed at the end of the
circuit. Measurement is a non-unitary operation, so is it possible that by using intermediate
measurements in the “middle” of the circuit, we might be able to more efficiently construct a
particular unitary operation?

The principle of deferred measurement says that each intermediate measurements can es-
sentially be pushed to the end of circuit by introducing a new ancillary qubit. The resulting
probably distribution over all measurments made in the circuit will be the same before and
after the transformation. The figure below depicts a general form of this transformation:

|ψ⟩

a

Va −→

|0⟩
a

|ψ⟩ V0 V1

The left side shows a quantum circuit where the intermediate measurement has outcome
a ∈ {0, 1} and unitary Va is applied as a result. The right side shows a quantum circuit where
this measurement has been deferred to the end of the circuit by pushing it onto an ancilla.
(Note: a control gate with an open circle is usually used to denote that the gate is controlled
on 0, rather than 1.)

To verify correctness of this procedure, it suffices to check that tracing out the first qubit
on the right side circuit results in the same density matrix as you get from the left.

Chapter 3

Query Complexity

In this chapter we explore one of our first tools for comparing the power of quantum and
classical computation—query complexity. In the query complexity setting, we imagine there
is some property of a function that we are trying to compute. The catch is that we can only
learn things about the function by “querying” its value on a single input at a time. The number
of times we need to query the function to learn the property is new measure of complexity
(rather than something like the gate count in the quantum circuit).

The benefit of this approach is that the blackbox nature of the function greatly restricts
the kinds of algorithms (both quantum and classical) that you could use to solve the problem.
This will allow us to prove tight bounds on the query complexity for both the quantum and
classical computers. When the quantum computation requires significantly fewer queries, we
have evidence of a quantum advantage. In fact, many of the efficient query algorithms we will
discuss in this chapter are also efficient in the more traditional sense (i.e., have polynomial-
size quantum circuits), and therefore, form the basis for some of the most promising quantum
algorithms.

For some intuition for the power of this setting, imagine a satisfiability problem captured
by a function f : {0, 1}n → {0, 1}. That is, we want to find some input x ∈ {0, 1} such that
f(x) = 1. Now imagine the function is instantiated by polynomially many constraints, e.g.,
an NP-complete problem like 3-SAT. It is a famously open problem if NP-hard problem like
this can be solved in polynomial time. However, when we look at the query version of this
problem—that is, we can only query f on inputs x ∈ {0, 1}n one at a time—the problem
is obviously hopelessly difficult for a classical polynomial-time machine. If there is at most
one possible input x such that f(x) = 1, we have to make exponentially many queries to
determine if such an x exists.

Despite the restricted access model for query algorithms, we will see that there can still
be nontrivial algorithms for a variety of different problems. The purpose of this section is
to showcase how quantum algorithms fare in this setting in comparison to their classical
counterparts.

3.1 Defining a quantum oracle

Querying a function f : {0, 1}n → {0, 1}m is pretty straightforward in the classical circuit
setting—the queries consist of n-input m-output gates, and the query complexity is the num-

21

CHAPTER 3. QUERY COMPLEXITY 22

ber of these query gates that are required to solve the problem.
Let’s now discuss what exactly it means to query the function quantumly. We will use two

oracle models. First, we define the standard oracle Bf which acts on two registers, an input
register and a output register:

Bf |x⟩ |b⟩ = |x⟩ |b⊕ f(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}m. That is, the standard oracle just computes the value of the
function on the input and dumps it (reversibly) into the output register.

Is this a reasonable model? In other words, how can we justify that we are not cheating
by giving the quantum algorithm a query model which is fundamentally more powerful than
the query model in the classical setting (in a way which it unrelated to the power of quantum
computation)? One way to see this is to imagine what it would look like to instantiate the
function f for a practical problem. For any setting where there is a classical circuit for f (e.g.,
in our example where f was a 3-SAT formula), then the quantum circle can implement the
oracle Bf by straightforwardly implenting the classical circuit in superposition. On the other
hand, if there’s no classical circuit for f , then the classical oracle also doesn’t make any sense!

As it turns out, it’s often useful to have another query model where the output of f is
computed in the phase of the input. For every function f : {0, 1}n → {0, 1}, the phase oracle
Of is defined so that

Of |x⟩ = (−1)f(x) |x⟩
for all x ∈ {0, 1}n. The phase oracle is only marginally different from the standard oracle.
In fact, the standard oracle can simulate the phase oracle with a single ancilla qubit (which
we leave as an exercise). An almost-identical construction shows that the Bf oracle can be
simulated by a single query to a controlled-Of oracle.

3.2 Fourier sampling problems

Let’s start with one of the simplest examples of a quantum-classical query separation. Our
goal will be determine if a function f : {0, 1} → {0, 1} is constant or not, i.e., if f(0) = f(1)
or not. Classically, it is clear that we need two queries. We must check both f(0) and f(1) to
know if they are equal.

We claim there is a simple 1-query quantum circuit (Deutsch’s algorithm) for this task:

|0⟩ H Of H

Tracing through the circuit, we get

|0⟩ H−→ |0⟩+ |1⟩√
2

Of−−→ (−1)f(0) |0⟩+ (−1)f(1) |1⟩√
2

= (−1)f(0)
(
|0⟩+ (−1)f(0)⊕f(1) |1⟩√

2

)

H−→ (−1)f(0) |f(0)⊕ f(1)⟩

Therefore, if f(0) = f(1), we will measure |0⟩ with 100%, and if f(0) ̸= f(1), we will measure
|1⟩ with 100% probability. That is, we have a quantum algorithm that distinguishes between
constant and non-constant functions with 100% probability.

CHAPTER 3. QUERY COMPLEXITY 23

A 1 vs. 2-query separation may not seem like a big deal, but essentially the exact same al-
gorithm can lead to a much more impressive separation. To get these impressive separations,
however, we will have to make a sacrifice. Namely, we will need to look at promise problems,
that is, problems where the input function f has some specific property, called the “promise”.
Importantly, we will never judge our algorithm’s correctness on functions f that don’t satisfy
the promise. This will allow us to devise algorithms that exploit some very specific structure
for a query advantage.

3.2.1 Deutsch-Jozsa problem

Let’s begin with a problem that’s the n-qubit generalization of Deutsch’s problem:

Deutsch-Jozsa problem

Input: f : {0, 1}n → {0, 1}
Promise: f is either

Constant: All outputs of f are equal. ∀x, y ∈ {0, 1}n, f(x) = f(y)
Balanced: f has equal number of 0 and 1 outputs. |{x|f(x) = 1}| = 2n−1

Question: Is f constant or balanced?

Notice that a classical deterministic machine requires 2n−1 + 1 queries to f . In the worst
case, the first 2n−1 queries to f yield the same output. It could be that all other unqueried
inputs yield the same value (i.e., the function is constant) or all unqueried values yield the
other value (i.e., the function is balanced). Therefore, we need 1 more query to solve the
problem.

Miraculously, the quantum algorithm still only needs 1 query, and in fact, the quantum
circuit is nearly identical to the one we saw previously:

|0n⟩ H⊗n Of H⊗n

Let’s step through the circuit, one layer of gates at a time:

1. Apply a layer of Hadamard gates:

|0n⟩ H⊗n

−−−→ 1√
2n

∑

x∈{0,1}n
|x⟩

2. Apply the phase oracle:

1√
2n

∑

x∈{0,1}n
|x⟩ Of−−→ 1√

2n

∑

x∈{0,1}n
(−1)f(x) |x⟩

3. Apply final layer of Hadamard gates:

1√
2n

∑

x∈{0,1}n
(−1)f(x) |x⟩ H⊗n

−−−→ 1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩

CHAPTER 3. QUERY COMPLEXITY 24

Here, we are using “·” to denote the inner product between x and y as binary vectors
(i.e., x · y =

∑n
i=1 xiyi). To see why this is true, we remark that the result of applying

an n-fold Hadamard gate on an arbitrary classical state |x⟩ can be written as

H⊗n |x⟩ =
n⊗

i=1

(|0⟩+ (−1)xi |1⟩) =
n⊗

i=1

(
(−1)xi·0 |0⟩+ (−1)xi·1 |1⟩

)

=
n⊗

i=1

 ∑

yi∈{0,1}
(−1)xi·yi |yi⟩

 =

∑

y∈{0,1}n
(−1)

∑n
i=1 xiyi |y⟩ .

What happens when we measure the state in Step 3? Let’s look specifically at the proba-
bility we measure the all-zeros state (i.e., y = 0n). Since x · 0n = 0 for all x ∈ {0, 1}n, the
amplitude on |0n⟩ is

1

2n

∑

x∈{0,1}n
(−1)f(x).

If the function f is constant, then f(x) = f(0n) for all x ∈ {0, 1}n, so

1

2n

∑

x∈{0,1}n
(−1)f(0n) = (−1)f(0n)

2n

 ∑

x∈{0,1}n
1

 = (−1)f(0n)

In other words, if we were to measure the state, then we would observe the all-zeros state
with 100% probability.

If f is balanced, instead of all the amplitudes on the all-zeros state adding up construc-
tively, they all cancel each other out:

1

2n

∑

x∈{0,1}n
(−1)f(x) = |{x | f(x) = 0}| − |{x | f(x) = 1}|

2n
= 0.

That is, if f is balanced, then we measure a state which is not the all-zeros state with 100%
probability. Combining the two cases above, we can see that whether or not we measure the
all-zeros state immediately solves the Deutsch-Jozsa problem.

At first glance, this 1 vs. Θ(2n) quantum-classical query separation seems quite amazing,
and possibly the best we could hope for. However, recall that the classical lower bound
was for deterministic classical computation. If we were to allow for classical randomness,
the problem becomes dramatically simpler. The classical algorithm would simply query f
on a few uniformly random inputs. If the function is balanced, then you are likely to see
two different outputs using only constantly many queries (to formalize this argument, use the
Chernov bound). That is, quantum algorithms are at best only marginally better than classical
randomized algorithms for the Deutsch-Jozsa problem.

3.2.2 Berstein-Vazirani

Let’s now consider a similar problem where the classical algorithm will struggle a bit more:

CHAPTER 3. QUERY COMPLEXITY 25

Berstein-Vazirani problem

Input: f : {0, 1}n → {0, 1}
Promise: f is linear. For all x ∈ {0, 1}n, f(x) = x · s for some secret string s ∈ {0, 1}n
Question: Determine the value of the secret string s.

Once again, let’s start by discussing the best classical query algorithm. Unlike the Deutsch-
Jozsa problem, there is a fairly efficient algorithm—only n queries are needed. To see this,
consider the algorithm that the queries f on the inputs e1 := 10 · · · 0, e2 := 010 · · · 0, and so
on up to en := 0 · · · 01. Notice that f(ei) = ei · s = si, so each query reveals one of the n bits
of s.

Can we do better? perhaps by using randomness? Unfortunately, not. To see this, consider
that each query x · s = f(x) gives us a linear equation (over F2) where there are n unknown
variables (i.e., the n bits of s). A linear system of equations with n-variables can only have a
unique solution if there are at least n equations. Therefore, we require at least n queries.

As it turns out, the quantum algorithm is identical to the one for the Deutsch-Josza
problem—a layer of Hadamards, followed by the phase oracle, followed by another layer of
Hadamards. The only thing that changes is what we conclude from the measurement. There-
fore, let’s start from the state we constructed in Step 3 in our algorithm for the Deutsch-Josza
problem:

1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩ .

Using the fact that f(x) = x · s, we get

1

2n

∑

x,y∈{0,1}n
(−1)x·s+x·y |y⟩ = 1

2n

∑

x,y∈{0,1}n
(−1)x(s⊕y) |y⟩

Looking at the amplitude on state |s⟩, we see that the term (−1)x(s⊕y) = 1 for all x since
s ⊕ s = 0. Since there are 2n values for x, we immediately get that amplidude on |s⟩ is 1. In
other words, we measure |s⟩ with 100% probability, but s was exactly what we were looking
for!

Therefore, the Berstein-Vazirani problem gives us a 1 vs. n quantum-classical query separa-
tion. While this is less impressive than the initial separation we obtained for the Deutsch-Jozsa
problem, it’s worth emphasizing that this separation even holds against randomized classical
algorithms.

3.2.3 Fourier sampling

As a final remark, we note that both the Deutsch-Josza and Berstein-Vazirani algorithms are
instances of Fourier sampling. To see this, let’s quickly introduce the Fourier basis. First, we
define the functions

χy(s) := y · s (mod 2)

CHAPTER 3. QUERY COMPLEXITY 26

for all y ∈ {0, 1}n. These functions are orthonormal with respect to following inner product
on real-valued functions f, g : {0, 1}n → R:

⟨f, g⟩ := 1

2n

∑

x∈{0,1}n
(−1)f(x)+g(x).

To see orthonormality of these basis vectors, we compute

⟨χy, χz⟩ =
1

2n

∑

x∈{0,1}n
(−1)x·y+x·y = 1

2n

∑

x∈{0,1}n
(−1)x·(y⊕z) =

{
1 if y = z

0 if y ̸= z
.

Since we’ve defined a basis of 2n independent functions, every Boolean function f : {0, 1}n →
{0, 1} can be written uniquely as

f(x) =
∑

y∈{0,1}n
f̂(y)χy(x)

for coefficients f̂(y) ∈ R. Using the inner product, we can explicitly compute the Fourier
coefficients as

f̂(y) = ⟨f, χy⟩ =
1

2n

∑

x∈{0,1}n
(−1)f(x)+χy(x).

Let’s now consider what the Deutsch-Josza/Berstein-Vazirani algorithm does when we expand
f in the Fourier basis. Once again, explicitly computing H⊗nOfH⊗n |0n⟩, we get

1

2n

∑

x,y∈{0,1}n
(−1)f(x)+x·y |y⟩ =

∑

y∈{0,1}n

 1

2n

∑

x∈{0,1}n
(−1)f(x)+χy(x)

 |y⟩ =

∑

y∈{0,1}n
f̂(y) |y⟩ .

In other words, what our quantum algorithm is actually doing for the Deutsch-Josza and
Berstein-Vazirani problems is sampling a y ∈ {0, 1}n with probability equal to |f̂(y)|2. There-
fore, any function f that has simple Fourier expansion is immediately a promising candidate
for an efficient quantum query algorithm.

3.3 Hidden subgroup problems

Let’s now deviate slightly from our Fourier sampling framework to obtain a problem on which
the classical algorithm will really struggle:

Simon’s problem

Input: f : {0, 1}n → {0, 1}n
Promise: Outputs of f are paired by secret s ∈ {0, 1}n.

That is, f(x) = f(y) iff x = y ⊕ s.
Question: Determine the secret string s.

CHAPTER 3. QUERY COMPLEXITY 27

Notice that to solve Simon’s problem it suffices to find a collision, a pair of strings x ̸=
y such that f(x) = f(y). If we find such an input pair, we can deduce s by taking their
difference:

f(x) = f(y) =⇒ x = y ⊕ s =⇒ s = x⊕ y.
Notice that if we query random inputs, we can expect to find a collision after only O(

√
2n)

queries via the birthday paradox bound. In fact, this algorithm can be derandomized so that
O(
√
2n) queries are sufficient for a classical determistic algorithm [CQ18]. Intuitively, after k

queries, we’ve looked at
(
k
2

)
≈ k2 pairs of inputs, so we need k ≈ 2n/2 queries to find one of

the 2n−1 pairs. This same argument also suffices to give a lower bound of Ω(
√
2n) queries.

The quantum algorithm proceeds by running the following circuit O(n) times:

|0n⟩ H⊗n

Bf

H⊗n

|0n⟩

Let’s once again analyze this circuit layer by layer:

1. Apply a layer of Hadamard gates:

|0n⟩ |0n⟩ H⊗n⊗I⊗n

−−−−−−→ 1√
2n

∑

x∈{0,1}n
|x⟩ |0n⟩ .

2. Apply the standard oracle:

1√
2n

∑

x∈{0,1}n
|x⟩ |0n⟩ Bf−−→ 1√

2n

∑

x∈{0,1}n
|x⟩ |f(x)⟩

3. Measure the second register, getting outcome f(x):

1√
2n

∑

x∈{0,1}n
|x⟩ |f(x)⟩ measure−−−−−→ |x⟩+ |x⊕ s⟩√

2
|f(x)⟩

The idea is that there are only two inputs that are consistent with a measurement of f(x)
in the second register, both x and x ⊕ s. Therefore, the first register is a superposition
over those inputs. We can now drop the second register since it is unentangled with the
first.

4. Apply another layer of Hadamard gates:

|x⟩+ |x⊕ s⟩√
2

H⊗n

−−−→ 1√
2n+1

∑

y∈{0,1}n

(
(−1)x·y + (−1)y·(x⊕s)

)
|y⟩

5. Measure first register to obtain uniformly random y ∈ {0, 1}n such that y · s = 0:

1√
2n+1

∑

y∈{0,1}n

(
(−1)x·y + (−1)y·(x⊕s)

)
|y⟩ = 1√

2n+1

∑

y∈{0,1}n
(−1)x·y

(
1 + (−1)y·s)

)
|y⟩

CHAPTER 3. QUERY COMPLEXITY 28

From the right hand side, we can see that if y · s = 1, the amplitude on state |y⟩ is 0.
On the other hand, if y · s = 0, then the amplitude is (−1)x·y/

√
2n−1. Taken together,

this implies that the measurement returns a uniformly random y ∈ {0, 1}n such that
y · s = 0.

To complete the quantum algorithm for Simon’s problem, we note that the measurement
result y gives us a random linear equation (over F2), y · s = 0. If we could collect the n − 1
linearly independent equations that span the subspace orthogonal to s, we could solve for
the bits of s. Since our measurement results are uniformly random within this space, we
will collect n − 1 linearly independent equations with only O(n) measurements with high
probability.

To conclude, we finally have a problem in which quantum computers are getting an ex-
ponential advantage over classical computers—O(n) vs. O(

√
2n) queries. In fact, Simon’s

problem is special case of a wider class of problems which (sometimes) admit fast quantum
algorithms.

Hidden Subgroup Problem (HSP)

Input: f : G→ {0, 1}∗ where G is a group
Promise: f is constant on a hidden subgroup H ≤ G.

That is, f(x) = f(y) iff xH = yH.
Question: Determine the hidden subgroup H.

Notice that Simon’s problem is HSP for the group G = Zn2 and the subgroup H = {0n, s}.
In fact, the discrete log problem in Z×

N (a crucial step in Shor’s integer factorization algorithm)
can be cast as an instance of HSP for the additive abelian group G = ZN × ZN . Both of these
algorithms fall within a wide class of efficiently solvable HSP instances:

Theorem 3.1 (Kitaev [Kit95]). HSP for finite abelian groups is in quantum polynomial time.

What about non-abelian groups? The story is surprisingly subtle. While we don’t know of
any efficient quantum algorithms for such groups, there are efficient algorithms as measured
by the query complexity:

Theorem 3.2 (Ettinger, Høyer, Knill [EHK04]). The query complexity of HSP for any finite
group G is polynomial in log |G|.

As some small taste for the power of such HSP instances, if the Ettinger-Høyer-Knill algo-
rithm could be made time-efficient, then there would be an efficient quantum algorithm for
the graph isomorphism problem, which has long evaded fast classical techniques.

3.4 Grover’s algorithm and the unstructured search problem

So far, we’ve seen some huge quantum speedup for various query problems. Importantly,
however, these exponential speedups have been for promise problems where the input in-
stance comes from some restricted class. Let’s now move on to consider total problems, where
the problem must be well-defined over all possible instances.

CHAPTER 3. QUERY COMPLEXITY 29

One might wonder why we cannot just take any promise problem for which a quantum
computer had some kind of advantage and extend it to inputs for which it wasn’t previously
defined. Unfortunately, the issue is that we cannot easily detect the inputs for which the
original promise held. Since we must be able to detect those inputs to answer consistently
on all inputs, it’s unclear how to make such a strategy work. If fact, such a strategy provably
cannot work:

Theorem 3.3 (Aaronson, Ben-David, Kothari, and Tal [ABDKT20]). The deterministic query
complexity of a total function is at most the quantum query complexity of that function to the
fourth power.

In other words, total functions can only yield polynomial query speedups. That said,
the bound in the theorem is tight up to log factors [ABB+17]—there is a total problem on
which determinstic algorithms require quartically many more queries than the best quantum
algorithm. Instead of looking at total problems in general, let’s look at a specific total problem
that has shaped a lot of the discussion around quantum computers.

Unstructured search

Input: f : {0, 1}n → {0, 1}
Question: Find x ∈ {0, 1}n such that f(x) = 1 (or report none exists)

It’s worth taking a moment to appreciate how monumental a fast quantum algorithm for
unstructured search would be. Since problems in NP can be phrased as unstructured search
problems (e.g., given a SAT formula, find a satisfying assignment), a poly-time quantum
algorithm for unstructured search would immediately imply that NP ⊆ BQP. Of course, by
Theorem 3.3, we already know such a simple strategy for solving NP problems won’t work.
That is, since classical computers require exponentially many queries to solve unstructured
search, so must quantum computers.

To see that exponentially many classical queries are required, consider the case where
there is at most one input which evaluates to 1. Any classical deterministic algorithm will
need to make 2n queries since it might get unlucky and query 2n − 1 zeroes. Randomness
doesn’t help—even if you query half of the inputs, you only have a 1/2 chance at choosing
the input that evaluates to 1.

3.4.1 BBBV lower bound for search

While Theorem 3.3 leaves open the possibility that unstructured search can be solved with
O(2n/4) queries, this is unfortunately still too optimistic.

Theorem 3.4 (Bennett, Bernstein, Brassard, Vazirani [BBBV97]). The quantum query com-
plexity of unstructured search is Ω(

√
2n).

As we will see later, there are actually many possible ways to prove this lower bound, but
the BBBV lower bound was the first and perhaps most intuitive lower bound technique, so
let’s start with that. First, notice that a generic quantum query algorithm alternates between

CHAPTER 3. QUERY COMPLEXITY 30

applying some unitary and applying the oracle. In other words, after t queries, the state of
our system looks like

UtOfUt−1 · · ·OfU1OfU0 |0n⟩ .
To be fully rigorous here, we would also need to specify a set of ancillary workspace qubits,
but this will not change the analysis and only make the notation more cumbersome, so we
will drop these extra qubits.

A key point about this decomposition is that the unitaries U0, U1, . . . , Ut are fixed and
are independent of what the oracle does. When there are few oracle queries, our goal will
be to show that for every choice of unitaries, there is some state |y⟩ that always has small
amplitude when queried by the oracle. Because of this, it will be very difficult for the algo-
rithm to “see” whether or not this item is marked. Therefore, we can fool the algorithm into
accepting/rejecting when it shouldn’t.

Let’s first consider what our algorithm does on the constant-zero function. In this case,
the oracle is just the identity, and the algorithm should reject. The state of the algorithm after
t queries is

|ψt⟩ := UtUt−1 · · ·U1U0 |0n⟩ =
∑

x∈{0,1}n
αx,t |x⟩ .

Supposing there are T total queries, define the quantity

mx :=
T−1∑

t=0

|αx,t|2.

to be the sum of the squares of the magnitudes on x over all states |ψt⟩ we have right before
the tth oracle call. We have that

∑

x∈{0,1}n
mx =

∑

x∈{0,1}n

T−1∑

t=0

|αx,t|2 =
T−1∑

t=0

 ∑

x∈{0,1}n
|αx,t|2

 =

T−1∑

t=0

1 = T.

Since mx is non-negative, this implies that there must exist some y ∈ {0, 1}n such that my ≤
T/2n (otherwise, the sum is greater than T). This y will be the element that the algorithm
fails to properly consider if T is too small. The above argument gives us a bound on the sum
of the squares of the magnitudes for the input y, but it will turn out that we will actually need
a bound on the sum of the magnitudes themselves. Fortunately, by Cauchy-Schwarz, we have

T∑

t=0

|αy,t| ≤

√√√√
T∑

t=1

|αy,t|2 · T =
√
myT ≤

T√
2n
.

Since we can refer to the all-zeros function as the identity, let f be the function which is 1 on
y and 0 elsewhere. Our goal is to distinguish the oracle for f from the oracle for the identity,
but for the purposes of analysis, let’s consider a set of rather strange oracles {O(t)}Tt=0. Here,
O(t) is defined to be the identity for the first t queries and f on the remaining T − t queries.
In other words, the oracle is interpolates between our two function instances. Let’s define the
set of states arising from the application of these oracles as

|φ(t)⟩ := UTO
(t)UT−1 · · ·O(t)U1O

(t)U0 |0n⟩ = UTOfUT−1 · · ·OfUt+1Of |ψt⟩

CHAPTER 3. QUERY COMPLEXITY 31

So, for example, we have that |φ(T)⟩ = |ψT ⟩ is the state for the complete execution of the
quantum algorithm for the constant-zero function, and |φ(0)⟩ is the state for the execution of
the quantum algorithm for f .

If we can show that |φ(t+1)⟩ is close to |φ(t)⟩ for all t, then by the triangle inequality, we
will be able to conclude that the states from the two different problem instances are also close
to each other. We have the following:

∥|φ(t+1)⟩ − |φ(t)⟩∥ = ∥UTOfUT−1 · · ·OfUt+2Of |ψt+1⟩ − UTOfUT−1 · · ·OfUt+1Of |ψt⟩∥
= ∥(UTOfUT−1 · · ·OfUt+2OfUt+1) |ψt⟩ − (UTOfUT−1 · · ·OfUt+1)Of |ψt⟩∥
= ∥|ψt⟩ −Of |ψt⟩∥
= 2|αy,t|

where we have used the fact that unitaries preserves the 2-norm and the fact that Of |ψt⟩ =
|ψt⟩ − 2αy,t |y⟩. Combining everything together, we get

∥|φ(T)⟩ − |φ(0)⟩∥ ≤
T−1∑

t=0

∥|φ(t+1)⟩ − |φ(t)⟩∥ ≤ 2
T−1∑

t=0

|αy,t| ≤
2T√
2n
.

Hence, we see that for T ≪
√
2n, the two states are close under ℓ2 norm. We want to

show that if the states are close, then all measurement procedures fail to distinguish them
with high probability. To formalize this, let us define the total variation distance between two
discrete probability distributions p, q:

TV(p, q) =
1

2
∥p− q∥1 =

1

2

∑

i

|pi − qi|.

The total variation distance is important because it determines the maximum probability with
which we can distinguish two probability distributions. That is, suppose with 50% probability
we sample from p and with 50% probability we sample from q, the maximum probability with
which we can guess which distribution was sampled from is 1/2 + TV(p, q)/2.

Lemma 3.5. If ∥|ϕ⟩ − |ψ⟩∥2 < ϵ, then the total variation distance from measuring |ϕ⟩ and |ψ⟩
is at most 2ϵ.

Proof. Suppose |ϕ⟩ = ∑
αx |x⟩, |ψ⟩ =

∑
βx |x⟩. For ease of notation, assume αx, βx are all

real numbers, though the proof still works if we allow them to be complex. Let γx = βx − αx.
Now we write

∥|ϕ⟩ − |ψ⟩∥2 =
√∑

x

γ2x ≤ ϵ.

Let p, q be the distributions of measuring |ϕ⟩, |ψ⟩ respectively. Then, we have that (twice)

CHAPTER 3. QUERY COMPLEXITY 32

their total variation distance is
∑

x

|α2
x − β2x| =

∑

x

(βx − αx)(βx + αx)

=
∑

x

γx(γx + 2αx)

≤
∑

x

γ2x + 2|γxαx| (triangle inequality)

≤ ∥γ∥22 + 2∥γ∥2∥α∥2 (Cauchy–Schwarz)

≤ ϵ2 + 2ϵ ,

which is at most 4ϵ since ϵ ≤ 2 by the triangle inequality (∥|ϕ⟩− |ψ⟩∥2 ≤ ∥|ϕ⟩∥2+∥|ψ⟩∥2 = 2).
Hence the TV distance is at most 2ϵ.

Putting everything together, we have shown that for any quantum algorithm with T
queries, there is a state we should accept and one we should reject which we can distin-
guish with probability at most 1

2 +
2T√
2n

. To correctly answer at least 2/3 of the time, this must

be at least a constant larger than 1/2, which requires T = Ω(2n/2).

3.4.2 Grover’s algorithm

While a Ω(
√
2n) query lower bound for search is an unpleasant reality, notice that the situation

is not as bad as it could be—after all, the classical algorithm requires Ω(2n) queries. Can we
devise a devise a quantum algorithm that gets this quadratic improvement over the classical
algorithm? We can!

Theorem 3.6 (Grover’s algorithm). There is a O(
√
2n) time quantum algorithm for unstruc-

tured search.

It will turn out that the simplest version of Grover’s algorithm depends on the number of
marked items, that is, inputs x such that f(x) = 1. Therefore, let’s assume for now that there
is only a single marked item. We will see in the analysis that this is the “hard” case.

The entirety of Grover’s algorithm is simply alternating between the phase oracle (i.e.,
Of) and the “Grover diffusion operator” defined as

D := 2 |u⟩⟨u| − I

where |u⟩ := H⊗n |0n⟩ is the uniform superposition.

Claim 3.7. The diffusion operator D := 2 |u⟩⟨u| − I is a unitary operation that reflects1 about
|u⟩. Furthermore, D can be constructed with linearly-many gates in log depth.

Proof. To verify that D is unitary, we can simply compute

DD† = (2 |u⟩⟨u| − I) · (2 |u⟩⟨u| − I)† = 4 |u⟩⟨u| − 2 |u⟩⟨u| − 2 |u⟩⟨u|+ I = I.

1By “reflect” about |u⟩, we mean that D flips the sign of every vector in the subspace orthogonal to |u⟩.

CHAPTER 3. QUERY COMPLEXITY 33

To see why D is a reflection about |u⟩, first notice that we can decompose an arbitrary state
|ψ⟩ as its component aligned with |u⟩ and its component orthogonal to |u⟩.

|ψ⟩ = α |u⟩+ β |v⟩ ,

where ⟨u|v⟩ = 0 and |α|2 + |β|2 = 1. Then, we can verify

D |ψ⟩ = α (2 (|u⟩⟨u|)− I) |u⟩+ β (2 (|u⟩⟨u|)− I) |v⟩ = α |u⟩ − β |v⟩ ,

where we use the fact that ⟨u|u⟩ = 1 and ⟨u|v⟩ = 0.
To see that D can be constructed with linearly-many gates in log depth, notice that if we

conjugate D by Hadamard, we get the reflection about the all-zeros state: D0 = 2 |0n⟩⟨0n|−I.
Therefore, we just need a circuit for D0. On the computational basis states, we have D0 |x⟩ =
(−1)x1∨···∨xn |x⟩ so we just need to be able to detect if any of the qubits are 1 (which can be
done with a linear-size, log-depth reversible circuit) and apply a phase gate depending on the
answer.

Algorithm 1 Grover’s algorithm
Input: 2n unknown input bits accessed through the oracle Of .
Output: s ∈ {0, 1}n such that f(s) = 1, or null if none exists.

1: |ψ0⟩ = H⊗n |0n⟩
2: for i ∈ {1, . . . , T} do
3: |ψi⟩ ← DOf |ψ⟩i−1

4: s∗ ← measurement of |ψT ⟩
5: return s∗ if f(s∗) = 1; otherwise, null

Examining Grover’s algorithm, we see that the final state before we measure is given by

DOf · · ·DOfDOf |u⟩

To understand why this algorithm works, it will be extremely useful to take a geometric per-
spective. To start, notice that our initial state |u⟩ lies in a particular 2-dimensional subspace
that is spanned by |s⟩ (our marked item) and |Ψ⟩ = 1√

2n−1

∑
x ̸=s |x⟩ (the uniform superposi-

tion over all unmarked states):

|u⟩ = 1√
2n

∑

x

|x⟩ = 1√
2n
|s⟩+ 1√

2n

∑

x ̸=s
|x⟩ = 1√

2n
|s⟩+

√
1− 1

2n
|Ψ⟩ .

First, we make the following intriguing observation:

Observation 3.8. Each Grover iteration keeps the state in the span of |s⟩ and |Ψ⟩.

Proof. This is easy to see for the phase oracle: α |s⟩ + β |Ψ⟩ Of−−→ −α |s⟩ + β |Ψ⟩. For the
diffusion operator, we have

α |s⟩+ β |Ψ⟩ D−→ (2 |u⟩⟨u| − I)(α |s⟩+ β |Ψ⟩) = 2(α ⟨u|s⟩+ β ⟨u|Ψ⟩) |u⟩ − α |s⟩ − β |Ψ⟩

but we’ve already seen above that |u⟩ can be expressed a linear combination of |s⟩ and |Ψ⟩.

CHAPTER 3. QUERY COMPLEXITY 34

In other words, each Grover operation is a rotation in the plane spanned by |s⟩ and |Ψ⟩.
We have that Of reflects about |Ψ⟩, and the diffusion operation reflects about |u⟩:

|Ψ⟩

|s⟩

|u⟩
θ0
θ0

Of |Ψ⟩

|s⟩

Of |u⟩

θ0
2θ0

θ0

D

If we compose the two operations (i.e., DOf) and apply them to any arbitray state |φ⟩, we
simply get a rotation in this space of 2θ0, where θ0 is the initial angle between |u⟩ and |Ψ⟩:

|Ψ⟩

|s⟩

|φ⟩
2θ0

θ

DOf

That is, the evolution of the angle is given by θ0, 3θ0, 5θ0, . . . , (2T + 1)θ0. Notice that we
want to reach the angle π/2, so we get that we need T ≈ π/(4θ0) steps. In other words,
performance our the entire algorithm hinges on the angle θ0 between our initial state |u⟩ and
the unmarked state |Ψ⟩. We have

sin(θ0) = ⟨u|s⟩ =
1√
2n

=⇒ θ0 ≈
1√
2n

where we have used that sin(x) = x− x3

3! +
x5

5! − . . . is approximately x for small x. Therefore,
to rotate our initial state to the |s⟩ state we need T = O(

√
2n). After that many queries, we

simply measure to obtain the marked state s with high probability.
Of course, this analysis only holds if there was indeed a marked element. However, after

we’ve done this procedure, we measure to obtain to some candidate marked item s∗. We can
use one more query to our oracle to check that f(s∗) = 1. This completes the analysis of
Grover’s algorithm for a single marked element.

What happens if there are more than 1 marked items? In this case, let |s⟩ be the uniform
superposition over all marked items. If we have m marked elements, then initial angle is

CHAPTER 3. QUERY COMPLEXITY 35

⟨s|u⟩ ≈
√
m/2n at least when there aren’t too many marked items (if there are so many

marked items, we can just randomly sample until we find one). Therefore, with the same
analysis, the number of queries required to rotate our state to |s⟩ is O(

√
2n/m). When we

measure, we get a uniformly random marked item. This speedup follows our intuition that if
there are more marked elements, it should be easier to find one of them.

There is one final question to address. Namely, the above analysis only works when we
know the number marked elements. Indeed, if we continue to do more Grover iterations,
then our state continues to rotate around the unit circle. If the number of marked items is
unknown, how do we know when to stop and measure? The trick is something called “ex-
ponential search.” We make the following sequence of guesses for m: 2n, 2n−1, 2n−2, . . . , 4, 2.
Notice that if we make all n possible guesses, then we are at most a factor of 2 off from the
true answer. One can check that this does not dramatically affect the analysis. The reason
that the we search in decreasing order is because we want to obtain a speedup in the case
that there are actually many marked items. If at any point we find a marked item, then we
stop.

3.4.3 Consequences of Grover’s algorithm

Consider a variant of Simon’s problem:

Collision

Input: f : {0, 1}n → {0, 1}n
Promise: f is 1-to-1 or 2-to-1
Question: Decide which

Fact 3.9. Suppose f is 2-to-1. Then for randomly chosen A,B ⊆ {0, 1}n with |A||B| = 2n there
is a constant probability that there exists a ∈ A and b ∈ B such that f(a) = f(b).

Theorem 3.10 (Brassard, Høyer, and Tapp [BHT97]). The quantum query complexity of the
Collision problem is O(2n/3).

Proof. Pick a random A of size 2n/3 and B of size 22n/3. First query each element of A, which
takes 2n/3 queries. With this, construct the (single query) function g(x) which returns true if
there is a ∈ A with f(x) = f(a). Now run Grover’s algorithm on B, to see if g is ever true.
This takes O(

√
22n/3) = O(2n/3) queries.

Bibliography

[ABB+17] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha,
and Juris Smotrovs. Separations in query complexity based on pointer functions.
Journal of the ACM (JACM), 64(5):1–24, 2017.

[ABDKT20] Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum
implications of Huang’s sensitivity theorem. arXiv:2004.13231, 2020.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Computing,
26(5):1510–1523, 1997.

[BGT21] Adam Bouland and Tudor Giurgica-Tiron. Efficient universal quantum compila-
tion: An inverse-free Solovay-Kitaev algorithm. arXiv preprint arXiv:2112.02040,
2021.

[BHT97] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision
problem. arXiv quant-ph/9705002, 1997.

[CQ18] Guangya Cai and Daowen Qiu. Optimal separation in exact query complexities
for simon’s problem. Journal of computer and system sciences, 97:83–93, 2018.

[DN06] Christopher M Dawson and Michael A Nielsen. The Solovay-Kitaev algorithm.
Quantum Information & Computation, 6(1):81–95, 2006.

[EHK04] Mark Ettinger, Peter Høyer, and Emanuel Knill. The quantum query complexity
of the hidden subgroup problem is polynomial. Information Processing Letters,
91(1):43–48, 2004.

[Kit95] A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv
preprint quant-ph/9511026, 1995.

[Kit97] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russ.
Math. Surv., 52(6):1191–1249, 1997.

[Kup23] Greg Kuperberg. Breaking the cubic barrier in the Solovay-Kitaev algorithm.
arXiv preprint arXiv:2306.13158, 2023.

36

	Foundations of Quantum Mechanics
	The basics of quantum computation
	Multi-qubit quantum computation
	Dirac notation and inner products
	Mixed states
	Noteworthy quantum phenomena

	Computation with Quantum Circuits
	Introduction to quantum circuits
	Universality, approximations, and circuit size
	Principle of Deferred Measurement

	Query Complexity
	Defining a quantum oracle
	Fourier sampling problems
	Hidden subgroup problems
	Grover's algorithm and the unstructured search problem

	Bibliography

